Metamath Proof Explorer


Theorem on0eqel

Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004)

Ref Expression
Assertion on0eqel ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ 𝐴
2 0elon ∅ ∈ On
3 onsseleq ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐴 ↔ ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ) )
4 2 3 mpan ( 𝐴 ∈ On → ( ∅ ⊆ 𝐴 ↔ ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ) )
5 1 4 mpbii ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) )
6 eqcom ( ∅ = 𝐴𝐴 = ∅ )
7 6 orbi2i ( ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ↔ ( ∅ ∈ 𝐴𝐴 = ∅ ) )
8 orcom ( ( ∅ ∈ 𝐴𝐴 = ∅ ) ↔ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
9 7 8 bitri ( ( ∅ ∈ 𝐴 ∨ ∅ = 𝐴 ) ↔ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
10 5 9 sylib ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )