Metamath Proof Explorer


Theorem on3ind

Description: Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses on3ind.1 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
on3ind.2 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
on3ind.3 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
on3ind.4 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
on3ind.5 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
on3ind.6 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
on3ind.7 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
on3ind.8 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
on3ind.9 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
on3ind.10 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
on3ind.i ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀ 𝑑𝑎𝑒𝑏 𝜒 ∧ ∀ 𝑑𝑎𝑓𝑐 𝜁 ) ∧ ( ∀ 𝑑𝑎 𝜓 ∧ ∀ 𝑒𝑏𝑓𝑐 𝜏 ∧ ∀ 𝑒𝑏 𝜎 ) ∧ ∀ 𝑓𝑐 𝜂 ) → 𝜑 ) )
Assertion on3ind ( ( 𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On ) → 𝜆 )

Proof

Step Hyp Ref Expression
1 on3ind.1 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
2 on3ind.2 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
3 on3ind.3 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
4 on3ind.4 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
5 on3ind.5 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
6 on3ind.6 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
7 on3ind.7 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
8 on3ind.8 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
9 on3ind.9 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
10 on3ind.10 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
11 on3ind.i ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀ 𝑑𝑎𝑒𝑏 𝜒 ∧ ∀ 𝑑𝑎𝑓𝑐 𝜁 ) ∧ ( ∀ 𝑑𝑎 𝜓 ∧ ∀ 𝑒𝑏𝑓𝑐 𝜏 ∧ ∀ 𝑒𝑏 𝜎 ) ∧ ∀ 𝑓𝑐 𝜂 ) → 𝜑 ) )
12 onfr E Fr On
13 epweon E We On
14 weso ( E We On → E Or On )
15 sopo ( E Or On → E Po On )
16 13 14 15 mp2b E Po On
17 epse E Se On
18 predon ( 𝑎 ∈ On → Pred ( E , On , 𝑎 ) = 𝑎 )
19 18 3ad2ant1 ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → Pred ( E , On , 𝑎 ) = 𝑎 )
20 predon ( 𝑏 ∈ On → Pred ( E , On , 𝑏 ) = 𝑏 )
21 20 3ad2ant2 ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → Pred ( E , On , 𝑏 ) = 𝑏 )
22 predon ( 𝑐 ∈ On → Pred ( E , On , 𝑐 ) = 𝑐 )
23 22 3ad2ant3 ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → Pred ( E , On , 𝑐 ) = 𝑐 )
24 23 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ↔ ∀ 𝑓𝑐 𝜃 ) )
25 21 24 raleqbidv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ↔ ∀ 𝑒𝑏𝑓𝑐 𝜃 ) )
26 19 25 raleqbidv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ↔ ∀ 𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ) )
27 21 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ↔ ∀ 𝑒𝑏 𝜒 ) )
28 19 27 raleqbidv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ↔ ∀ 𝑑𝑎𝑒𝑏 𝜒 ) )
29 23 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ↔ ∀ 𝑓𝑐 𝜁 ) )
30 19 29 raleqbidv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ↔ ∀ 𝑑𝑎𝑓𝑐 𝜁 ) )
31 26 28 30 3anbi123d ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ) ↔ ( ∀ 𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀ 𝑑𝑎𝑒𝑏 𝜒 ∧ ∀ 𝑑𝑎𝑓𝑐 𝜁 ) ) )
32 19 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ↔ ∀ 𝑑𝑎 𝜓 ) )
33 23 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ↔ ∀ 𝑓𝑐 𝜏 ) )
34 21 33 raleqbidv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ↔ ∀ 𝑒𝑏𝑓𝑐 𝜏 ) )
35 21 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ↔ ∀ 𝑒𝑏 𝜎 ) )
36 32 34 35 3anbi123d ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ) ↔ ( ∀ 𝑑𝑎 𝜓 ∧ ∀ 𝑒𝑏𝑓𝑐 𝜏 ∧ ∀ 𝑒𝑏 𝜎 ) ) )
37 23 raleqdv ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜂 ↔ ∀ 𝑓𝑐 𝜂 ) )
38 31 36 37 3anbi123d ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜂 ) ↔ ( ( ∀ 𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀ 𝑑𝑎𝑒𝑏 𝜒 ∧ ∀ 𝑑𝑎𝑓𝑐 𝜁 ) ∧ ( ∀ 𝑑𝑎 𝜓 ∧ ∀ 𝑒𝑏𝑓𝑐 𝜏 ∧ ∀ 𝑒𝑏 𝜎 ) ∧ ∀ 𝑓𝑐 𝜂 ) ) )
39 38 11 sylbid ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On ) → ( ( ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( E , On , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( E , On , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( E , On , 𝑐 ) 𝜂 ) → 𝜑 ) )
40 12 16 17 12 16 17 12 16 17 1 2 3 4 5 6 7 8 9 10 39 xpord3ind ( ( 𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On ) → 𝜆 )