| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frsuc |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 3 |
|
peano2 |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → suc 𝐵 ∈ ω ) |
| 5 |
4
|
fvresd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 6 |
|
fvres |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 9 |
2 5 8
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 10 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 11 |
|
onsuc |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ On ) |
| 13 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 14 |
12 13
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ suc 𝐵 ) ) |
| 15 |
|
ovex |
⊢ ( 𝐴 +o 𝐵 ) ∈ V |
| 16 |
|
suceq |
⊢ ( 𝑥 = ( 𝐴 +o 𝐵 ) → suc 𝑥 = suc ( 𝐴 +o 𝐵 ) ) |
| 17 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ suc 𝑥 ) = ( 𝑥 ∈ V ↦ suc 𝑥 ) |
| 18 |
15
|
sucex |
⊢ suc ( 𝐴 +o 𝐵 ) ∈ V |
| 19 |
16 17 18
|
fvmpt |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) ) |
| 20 |
15 19
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = suc ( 𝐴 +o 𝐵 ) |
| 21 |
|
oav |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 22 |
10 21
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( 𝐴 +o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 24 |
20 23
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → suc ( 𝐴 +o 𝐵 ) = ( ( 𝑥 ∈ V ↦ suc 𝑥 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ suc 𝑥 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 25 |
9 14 24
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o suc 𝐵 ) = suc ( 𝐴 +o 𝐵 ) ) |