| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o ) ) |
| 2 |
|
1on |
⊢ 1o ∈ On |
| 3 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ⊆ 1o ↔ ¬ 1o ∈ 𝐴 ) ) |
| 4 |
|
onsssuc |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ⊆ 1o ↔ 𝐴 ∈ suc 1o ) ) |
| 5 |
|
df-2o |
⊢ 2o = suc 1o |
| 6 |
5
|
eleq2i |
⊢ ( 𝐴 ∈ 2o ↔ 𝐴 ∈ suc 1o ) |
| 7 |
4 6
|
bitr4di |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ⊆ 1o ↔ 𝐴 ∈ 2o ) ) |
| 8 |
3 7
|
bitr3d |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( ¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o ) ) |
| 9 |
2 8
|
mpan2 |
⊢ ( 𝐴 ∈ On → ( ¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o ) ) |
| 10 |
9
|
con1bid |
⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ 2o ↔ 1o ∈ 𝐴 ) ) |
| 11 |
10
|
pm5.32i |
⊢ ( ( 𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
| 12 |
1 11
|
bitri |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |