Metamath Proof Explorer


Theorem ondomen

Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion ondomen ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → 𝐵 ∈ dom card )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐴 → ( 𝐵𝑥𝐵𝐴 ) )
2 1 rspcev ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → ∃ 𝑥 ∈ On 𝐵𝑥 )
3 ac10ct ( ∃ 𝑥 ∈ On 𝐵𝑥 → ∃ 𝑟 𝑟 We 𝐵 )
4 2 3 syl ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → ∃ 𝑟 𝑟 We 𝐵 )
5 ween ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 )
6 4 5 sylibr ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → 𝐵 ∈ dom card )