Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ondomen | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ≼ 𝑥 ↔ 𝐵 ≼ 𝐴 ) ) | |
| 2 | 1 | rspcev | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑥 ∈ On 𝐵 ≼ 𝑥 ) |
| 3 | ac10ct | ⊢ ( ∃ 𝑥 ∈ On 𝐵 ≼ 𝑥 → ∃ 𝑟 𝑟 We 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑟 𝑟 We 𝐵 ) |
| 5 | ween | ⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |