Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ondomen | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ≼ 𝑥 ↔ 𝐵 ≼ 𝐴 ) ) | |
2 | 1 | rspcev | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑥 ∈ On 𝐵 ≼ 𝑥 ) |
3 | ac10ct | ⊢ ( ∃ 𝑥 ∈ On 𝐵 ≼ 𝑥 → ∃ 𝑟 𝑟 We 𝐵 ) | |
4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑟 𝑟 We 𝐵 ) |
5 | ween | ⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 ) | |
6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |