Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ On ) |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ⊆ 𝑧 ) |
5 |
|
ssdomg |
⊢ ( 𝑧 ∈ V → ( 𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧 ) ) |
6 |
2 4 5
|
mpsyl |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ≼ 𝑧 ) |
7 |
1 6
|
jca |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ) |
8 |
|
domtr |
⊢ ( ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) → 𝑦 ≼ 𝐴 ) |
9 |
8
|
anim2i |
⊢ ( ( 𝑦 ∈ On ∧ ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
10 |
9
|
anassrs |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
11 |
7 10
|
sylan |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
12 |
11
|
exp31 |
⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
13 |
12
|
com12 |
⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ On → ( 𝑧 ≼ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) ) |
14 |
13
|
impd |
⊢ ( 𝑦 ∈ 𝑧 → ( ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≼ 𝐴 ↔ 𝑧 ≼ 𝐴 ) ) |
16 |
15
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝐴 ) ) |
17 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴 ) ) |
18 |
17
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴 ) ) |
19 |
14 16 18
|
3imtr4g |
⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
20 |
19
|
imp |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
21 |
20
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
22 |
|
dftr2 |
⊢ ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
23 |
21 22
|
mpbir |
⊢ Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
24 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On |
25 |
|
ordon |
⊢ Ord On |
26 |
|
trssord |
⊢ ( ( Tr { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ On ∧ Ord On ) → Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) |
27 |
23 24 25 26
|
mp3an |
⊢ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
28 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
29 |
|
canth2g |
⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) |
30 |
|
domsdomtr |
⊢ ( ( 𝑥 ≼ 𝐴 ∧ 𝐴 ≺ 𝒫 𝐴 ) → 𝑥 ≺ 𝒫 𝐴 ) |
31 |
29 30
|
sylan2 |
⊢ ( ( 𝑥 ≼ 𝐴 ∧ 𝐴 ∈ V ) → 𝑥 ≺ 𝒫 𝐴 ) |
32 |
31
|
expcom |
⊢ ( 𝐴 ∈ V → ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
33 |
32
|
ralrimivw |
⊢ ( 𝐴 ∈ V → ∀ 𝑥 ∈ On ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
34 |
28 33
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ On ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
35 |
|
ss2rab |
⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ↔ ∀ 𝑥 ∈ On ( 𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴 ) ) |
36 |
34 35
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ) |
37 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
38 |
|
numth3 |
⊢ ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ dom card ) |
39 |
|
cardval2 |
⊢ ( 𝒫 𝐴 ∈ dom card → ( card ‘ 𝒫 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ) |
40 |
37 38 39
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ 𝒫 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ) |
41 |
|
fvex |
⊢ ( card ‘ 𝒫 𝐴 ) ∈ V |
42 |
40 41
|
eqeltrrdi |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ∈ V ) |
43 |
|
ssexg |
⊢ ( ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴 } ∈ V ) → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |
44 |
36 42 43
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V ) |
45 |
|
elong |
⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ V → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
46 |
44 45
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ) ) |
47 |
27 46
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) |