Metamath Proof Explorer


Theorem onelon

Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of BellMachover p. 469. (Contributed by NM, 26-Oct-2003)

Ref Expression
Assertion onelon ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → 𝐵 ∈ On )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 ordelon ( ( Ord 𝐴𝐵𝐴 ) → 𝐵 ∈ On )
3 1 2 sylan ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → 𝐵 ∈ On )