Metamath Proof Explorer
Description: Relationship between membership and proper subset of an ordinal number.
(Contributed by NM, 15-Sep-1995)
|
|
Ref |
Expression |
|
Assertion |
onelpss |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
2 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
3 |
|
ordelssne |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |