Metamath Proof Explorer


Theorem onelpss

Description: Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995)

Ref Expression
Assertion onelpss ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 eloni ( 𝐵 ∈ On → Ord 𝐵 )
3 ordelssne ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )