Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | on.1 | ⊢ 𝐴 ∈ On | |
Assertion | oneluni | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | ⊢ 𝐴 ∈ On | |
2 | 1 | onelssi | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) |
3 | ssequn2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) | |
4 | 2 3 | sylib | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |