| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onnbtwn | ⊢ ( 𝐴  ∈  On  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  =  ( 2o  ·o  𝐴 ) )  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 3 |  | suceq | ⊢ ( 𝐶  =  ( 2o  ·o  𝐴 )  →  suc  𝐶  =  suc  ( 2o  ·o  𝐴 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝐶  =  ( 2o  ·o  𝐴 )  →  ( suc  𝐶  =  ( 2o  ·o  𝐵 )  ↔  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) ) ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  =  ( 2o  ·o  𝐴 ) )  →  ( suc  𝐶  =  ( 2o  ·o  𝐵 )  ↔  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) ) ) | 
						
							| 6 |  | ovex | ⊢ ( 2o  ·o  𝐴 )  ∈  V | 
						
							| 7 | 6 | sucid | ⊢ ( 2o  ·o  𝐴 )  ∈  suc  ( 2o  ·o  𝐴 ) | 
						
							| 8 |  | eleq2 | ⊢ ( suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 )  →  ( ( 2o  ·o  𝐴 )  ∈  suc  ( 2o  ·o  𝐴 )  ↔  ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  𝐵 ) ) ) | 
						
							| 9 | 7 8 | mpbii | ⊢ ( suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 )  →  ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  𝐵 ) ) | 
						
							| 10 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 11 |  | omord | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  2o  ∈  On )  →  ( ( 𝐴  ∈  𝐵  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  𝐵 ) ) ) | 
						
							| 12 | 10 11 | mp3an3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ∈  𝐵  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  𝐵 ) ) ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ∅  ∈  2o )  →  𝐴  ∈  𝐵 ) | 
						
							| 14 | 12 13 | biimtrrdi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  𝐵 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 15 | 9 14 | syl5 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) )  →  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) ) | 
						
							| 17 |  | omcl | ⊢ ( ( 2o  ∈  On  ∧  𝐴  ∈  On )  →  ( 2o  ·o  𝐴 )  ∈  On ) | 
						
							| 18 | 10 17 | mpan | ⊢ ( 𝐴  ∈  On  →  ( 2o  ·o  𝐴 )  ∈  On ) | 
						
							| 19 |  | oa1suc | ⊢ ( ( 2o  ·o  𝐴 )  ∈  On  →  ( ( 2o  ·o  𝐴 )  +o  1o )  =  suc  ( 2o  ·o  𝐴 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐴  ∈  On  →  ( ( 2o  ·o  𝐴 )  +o  1o )  =  suc  ( 2o  ·o  𝐴 ) ) | 
						
							| 21 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 22 | 21 | sucid | ⊢ 1o  ∈  suc  1o | 
						
							| 23 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 24 | 22 23 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 25 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 26 |  | oaord | ⊢ ( ( 1o  ∈  On  ∧  2o  ∈  On  ∧  ( 2o  ·o  𝐴 )  ∈  On )  →  ( 1o  ∈  2o  ↔  ( ( 2o  ·o  𝐴 )  +o  1o )  ∈  ( ( 2o  ·o  𝐴 )  +o  2o ) ) ) | 
						
							| 27 | 25 10 18 26 | mp3an12i | ⊢ ( 𝐴  ∈  On  →  ( 1o  ∈  2o  ↔  ( ( 2o  ·o  𝐴 )  +o  1o )  ∈  ( ( 2o  ·o  𝐴 )  +o  2o ) ) ) | 
						
							| 28 | 24 27 | mpbii | ⊢ ( 𝐴  ∈  On  →  ( ( 2o  ·o  𝐴 )  +o  1o )  ∈  ( ( 2o  ·o  𝐴 )  +o  2o ) ) | 
						
							| 29 |  | omsuc | ⊢ ( ( 2o  ∈  On  ∧  𝐴  ∈  On )  →  ( 2o  ·o  suc  𝐴 )  =  ( ( 2o  ·o  𝐴 )  +o  2o ) ) | 
						
							| 30 | 10 29 | mpan | ⊢ ( 𝐴  ∈  On  →  ( 2o  ·o  suc  𝐴 )  =  ( ( 2o  ·o  𝐴 )  +o  2o ) ) | 
						
							| 31 | 28 30 | eleqtrrd | ⊢ ( 𝐴  ∈  On  →  ( ( 2o  ·o  𝐴 )  +o  1o )  ∈  ( 2o  ·o  suc  𝐴 ) ) | 
						
							| 32 | 20 31 | eqeltrrd | ⊢ ( 𝐴  ∈  On  →  suc  ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  suc  𝐴 ) ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) )  →  suc  ( 2o  ·o  𝐴 )  ∈  ( 2o  ·o  suc  𝐴 ) ) | 
						
							| 34 | 16 33 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) )  →  ( 2o  ·o  𝐵 )  ∈  ( 2o  ·o  suc  𝐴 ) ) | 
						
							| 35 |  | onsuc | ⊢ ( 𝐴  ∈  On  →  suc  𝐴  ∈  On ) | 
						
							| 36 |  | omord | ⊢ ( ( 𝐵  ∈  On  ∧  suc  𝐴  ∈  On  ∧  2o  ∈  On )  →  ( ( 𝐵  ∈  suc  𝐴  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐵 )  ∈  ( 2o  ·o  suc  𝐴 ) ) ) | 
						
							| 37 | 10 36 | mp3an3 | ⊢ ( ( 𝐵  ∈  On  ∧  suc  𝐴  ∈  On )  →  ( ( 𝐵  ∈  suc  𝐴  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐵 )  ∈  ( 2o  ·o  suc  𝐴 ) ) ) | 
						
							| 38 | 35 37 | sylan2 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐵  ∈  suc  𝐴  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐵 )  ∈  ( 2o  ·o  suc  𝐴 ) ) ) | 
						
							| 39 | 38 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐵  ∈  suc  𝐴  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐵 )  ∈  ( 2o  ·o  suc  𝐴 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) )  →  ( ( 𝐵  ∈  suc  𝐴  ∧  ∅  ∈  2o )  ↔  ( 2o  ·o  𝐵 )  ∈  ( 2o  ·o  suc  𝐴 ) ) ) | 
						
							| 41 | 34 40 | mpbird | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) )  →  ( 𝐵  ∈  suc  𝐴  ∧  ∅  ∈  2o ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 ) )  →  𝐵  ∈  suc  𝐴 ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 )  →  𝐵  ∈  suc  𝐴 ) ) | 
						
							| 44 | 15 43 | jcad | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 )  →  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 ) ) ) | 
						
							| 45 | 44 | 3adant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  =  ( 2o  ·o  𝐴 ) )  →  ( suc  ( 2o  ·o  𝐴 )  =  ( 2o  ·o  𝐵 )  →  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 ) ) ) | 
						
							| 46 | 5 45 | sylbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  =  ( 2o  ·o  𝐴 ) )  →  ( suc  𝐶  =  ( 2o  ·o  𝐵 )  →  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  suc  𝐴 ) ) ) | 
						
							| 47 | 2 46 | mtod | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  =  ( 2o  ·o  𝐴 ) )  →  ¬  suc  𝐶  =  ( 2o  ·o  𝐵 ) ) |