Step |
Hyp |
Ref |
Expression |
1 |
|
onnbtwn |
⊢ ( 𝐴 ∈ On → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
3 |
|
suceq |
⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → suc 𝐶 = suc ( 2o ·o 𝐴 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
6 |
|
ovex |
⊢ ( 2o ·o 𝐴 ) ∈ V |
7 |
6
|
sucid |
⊢ ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) |
8 |
|
eleq2 |
⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
9 |
7 8
|
mpbii |
⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) |
10 |
|
2on |
⊢ 2o ∈ On |
11 |
|
omord |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
12 |
10 11
|
mp3an3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
13 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) → 𝐴 ∈ 𝐵 ) |
14 |
12 13
|
syl6bir |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
15 |
9 14
|
syl5 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) |
17 |
|
omcl |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ) → ( 2o ·o 𝐴 ) ∈ On ) |
18 |
10 17
|
mpan |
⊢ ( 𝐴 ∈ On → ( 2o ·o 𝐴 ) ∈ On ) |
19 |
|
oa1suc |
⊢ ( ( 2o ·o 𝐴 ) ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) |
21 |
|
1oex |
⊢ 1o ∈ V |
22 |
21
|
sucid |
⊢ 1o ∈ suc 1o |
23 |
|
df-2o |
⊢ 2o = suc 1o |
24 |
22 23
|
eleqtrri |
⊢ 1o ∈ 2o |
25 |
|
1on |
⊢ 1o ∈ On |
26 |
|
oaord |
⊢ ( ( 1o ∈ On ∧ 2o ∈ On ∧ ( 2o ·o 𝐴 ) ∈ On ) → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) |
27 |
25 10 18 26
|
mp3an12i |
⊢ ( 𝐴 ∈ On → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) |
28 |
24 27
|
mpbii |
⊢ ( 𝐴 ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) |
29 |
|
omsuc |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ) → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) |
30 |
10 29
|
mpan |
⊢ ( 𝐴 ∈ On → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) |
31 |
28 30
|
eleqtrrd |
⊢ ( 𝐴 ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( 2o ·o suc 𝐴 ) ) |
32 |
20 31
|
eqeltrrd |
⊢ ( 𝐴 ∈ On → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
34 |
16 33
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) |
35 |
|
suceloni |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
36 |
|
omord |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
37 |
10 36
|
mp3an3 |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
38 |
35 37
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
39 |
38
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
41 |
34 40
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ) |
42 |
41
|
simpld |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → 𝐵 ∈ suc 𝐴 ) |
43 |
42
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐵 ∈ suc 𝐴 ) ) |
44 |
15 43
|
jcad |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
45 |
44
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
46 |
5 45
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
47 |
2 46
|
mtod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ suc 𝐶 = ( 2o ·o 𝐵 ) ) |