| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 2 |
|
onomeneq |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ 𝑥 ↔ 𝐴 = 𝑥 ) ) |
| 3 |
|
eleq1a |
⊢ ( 𝑥 ∈ ω → ( 𝐴 = 𝑥 → 𝐴 ∈ ω ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 = 𝑥 → 𝐴 ∈ ω ) ) |
| 5 |
2 4
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ 𝑥 → 𝐴 ∈ ω ) ) |
| 6 |
5
|
rexlimdva |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ ω ) ) |
| 7 |
|
enrefnn |
⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) |
| 8 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴 ) ) |
| 9 |
8
|
rspcev |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 10 |
7 9
|
mpdan |
⊢ ( 𝐴 ∈ ω → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 11 |
6 10
|
impbid1 |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ 𝐴 ∈ ω ) ) |
| 12 |
1 11
|
bitrid |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ Fin ↔ 𝐴 ∈ ω ) ) |