Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfin2 | ⊢ ω = ( On ∩ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) | |
| 2 | onfin | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ Fin ↔ 𝑥 ∈ ω ) ) | |
| 3 | 2 | biimprcd | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ∈ On → 𝑥 ∈ Fin ) ) |
| 4 | 1 3 | jcai | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) ) |
| 5 | 2 | biimpa | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) → 𝑥 ∈ ω ) |
| 6 | 4 5 | impbii | ⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) ) |
| 7 | elin | ⊢ ( 𝑥 ∈ ( On ∩ Fin ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Fin ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( 𝑥 ∈ ω ↔ 𝑥 ∈ ( On ∩ Fin ) ) |
| 9 | 8 | eqriv | ⊢ ω = ( On ∩ Fin ) |