Metamath Proof Explorer


Theorem onfr

Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon (through epweon ) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994)

Ref Expression
Assertion onfr E Fr On

Proof

Step Hyp Ref Expression
1 dfepfr ( E Fr On ↔ ∀ 𝑥 ( ( 𝑥 ⊆ On ∧ 𝑥 ≠ ∅ ) → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ ) )
2 n0 ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦𝑥 )
3 ineq2 ( 𝑧 = 𝑦 → ( 𝑥𝑧 ) = ( 𝑥𝑦 ) )
4 3 eqeq1d ( 𝑧 = 𝑦 → ( ( 𝑥𝑧 ) = ∅ ↔ ( 𝑥𝑦 ) = ∅ ) )
5 4 rspcev ( ( 𝑦𝑥 ∧ ( 𝑥𝑦 ) = ∅ ) → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ )
6 5 adantll ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ ( 𝑥𝑦 ) = ∅ ) → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ )
7 inss1 ( 𝑥𝑦 ) ⊆ 𝑥
8 ssel2 ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) → 𝑦 ∈ On )
9 eloni ( 𝑦 ∈ On → Ord 𝑦 )
10 ordfr ( Ord 𝑦 → E Fr 𝑦 )
11 8 9 10 3syl ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) → E Fr 𝑦 )
12 inss2 ( 𝑥𝑦 ) ⊆ 𝑦
13 vex 𝑥 ∈ V
14 13 inex1 ( 𝑥𝑦 ) ∈ V
15 14 epfrc ( ( E Fr 𝑦 ∧ ( 𝑥𝑦 ) ⊆ 𝑦 ∧ ( 𝑥𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ∅ )
16 12 15 mp3an2 ( ( E Fr 𝑦 ∧ ( 𝑥𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ∅ )
17 11 16 sylan ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ ( 𝑥𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ∅ )
18 inass ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( 𝑦𝑧 ) )
19 8 9 syl ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) → Ord 𝑦 )
20 elinel2 ( 𝑧 ∈ ( 𝑥𝑦 ) → 𝑧𝑦 )
21 ordelss ( ( Ord 𝑦𝑧𝑦 ) → 𝑧𝑦 )
22 19 20 21 syl2an ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ 𝑧 ∈ ( 𝑥𝑦 ) ) → 𝑧𝑦 )
23 sseqin2 ( 𝑧𝑦 ↔ ( 𝑦𝑧 ) = 𝑧 )
24 22 23 sylib ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ 𝑧 ∈ ( 𝑥𝑦 ) ) → ( 𝑦𝑧 ) = 𝑧 )
25 24 ineq2d ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ 𝑧 ∈ ( 𝑥𝑦 ) ) → ( 𝑥 ∩ ( 𝑦𝑧 ) ) = ( 𝑥𝑧 ) )
26 18 25 eqtrid ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ 𝑧 ∈ ( 𝑥𝑦 ) ) → ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ( 𝑥𝑧 ) )
27 26 eqeq1d ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ 𝑧 ∈ ( 𝑥𝑦 ) ) → ( ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ∅ ↔ ( 𝑥𝑧 ) = ∅ ) )
28 27 rexbidva ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) → ( ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( 𝑥𝑧 ) = ∅ ) )
29 28 adantr ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ ( 𝑥𝑦 ) ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( ( 𝑥𝑦 ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( 𝑥𝑧 ) = ∅ ) )
30 17 29 mpbid ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ ( 𝑥𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( 𝑥𝑧 ) = ∅ )
31 ssrexv ( ( 𝑥𝑦 ) ⊆ 𝑥 → ( ∃ 𝑧 ∈ ( 𝑥𝑦 ) ( 𝑥𝑧 ) = ∅ → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ ) )
32 7 30 31 mpsyl ( ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) ∧ ( 𝑥𝑦 ) ≠ ∅ ) → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ )
33 6 32 pm2.61dane ( ( 𝑥 ⊆ On ∧ 𝑦𝑥 ) → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ )
34 33 ex ( 𝑥 ⊆ On → ( 𝑦𝑥 → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ ) )
35 34 exlimdv ( 𝑥 ⊆ On → ( ∃ 𝑦 𝑦𝑥 → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ ) )
36 2 35 syl5bi ( 𝑥 ⊆ On → ( 𝑥 ≠ ∅ → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ ) )
37 36 imp ( ( 𝑥 ⊆ On ∧ 𝑥 ≠ ∅ ) → ∃ 𝑧𝑥 ( 𝑥𝑧 ) = ∅ )
38 1 37 mpgbir E Fr On