Step |
Hyp |
Ref |
Expression |
1 |
|
dfepfr |
⊢ ( E Fr On ↔ ∀ 𝑥 ( ( 𝑥 ⊆ On ∧ 𝑥 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
2 |
|
n0 |
⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
3 |
|
ineq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∩ 𝑧 ) = ( 𝑥 ∩ 𝑦 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∩ 𝑧 ) = ∅ ↔ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
5 |
4
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
6 |
5
|
adantll |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
7 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 |
8 |
|
ssel2 |
⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
9 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
10 |
|
ordfr |
⊢ ( Ord 𝑦 → E Fr 𝑦 ) |
11 |
8 9 10
|
3syl |
⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → E Fr 𝑦 ) |
12 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 |
13 |
|
vex |
⊢ 𝑥 ∈ V |
14 |
13
|
inex1 |
⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
15 |
14
|
epfrc |
⊢ ( ( E Fr 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ) |
16 |
12 15
|
mp3an2 |
⊢ ( ( E Fr 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ) |
17 |
11 16
|
sylan |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ) |
18 |
|
inass |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( 𝑦 ∩ 𝑧 ) ) |
19 |
8 9
|
syl |
⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
20 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) → 𝑧 ∈ 𝑦 ) |
21 |
|
ordelss |
⊢ ( ( Ord 𝑦 ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ⊆ 𝑦 ) |
22 |
19 20 21
|
syl2an |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ⊆ 𝑦 ) |
23 |
|
sseqin2 |
⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑦 ∩ 𝑧 ) = 𝑧 ) |
24 |
22 23
|
sylib |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( 𝑦 ∩ 𝑧 ) = 𝑧 ) |
25 |
24
|
ineq2d |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( 𝑥 ∩ ( 𝑦 ∩ 𝑧 ) ) = ( 𝑥 ∩ 𝑧 ) ) |
26 |
18 25
|
eqtrid |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ 𝑧 ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ↔ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
28 |
27
|
rexbidva |
⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( ( 𝑥 ∩ 𝑦 ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
30 |
17 29
|
mpbid |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ ) |
31 |
|
ssrexv |
⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 → ( ∃ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝑥 ∩ 𝑧 ) = ∅ → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
32 |
7 30 31
|
mpsyl |
⊢ ( ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
33 |
6 32
|
pm2.61dane |
⊢ ( ( 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
34 |
33
|
ex |
⊢ ( 𝑥 ⊆ On → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
35 |
34
|
exlimdv |
⊢ ( 𝑥 ⊆ On → ( ∃ 𝑦 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
36 |
2 35
|
syl5bi |
⊢ ( 𝑥 ⊆ On → ( 𝑥 ≠ ∅ → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
37 |
36
|
imp |
⊢ ( ( 𝑥 ⊆ On ∧ 𝑥 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝑧 ) = ∅ ) |
38 |
1 37
|
mpgbir |
⊢ E Fr On |