Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ) |
2 |
|
simpr |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ≠ ∅ ) |
3 |
1 2
|
e1a |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ 𝑎 ≠ ∅ ) |
4 |
|
exmid |
⊢ ( ( 𝑎 ∩ 𝑥 ) = ∅ ∨ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) |
5 |
|
onfrALTlem1VD |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
6 |
5
|
in2an |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , 𝑥 ∈ 𝑎 ▶ ( ( 𝑎 ∩ 𝑥 ) = ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
7 |
|
onfrALTlem2VD |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
8 |
7
|
in2an |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , 𝑥 ∈ 𝑎 ▶ ( ¬ ( 𝑎 ∩ 𝑥 ) = ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
9 |
|
pm2.61 |
⊢ ( ( ( 𝑎 ∩ 𝑥 ) = ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ( ( ¬ ( 𝑎 ∩ 𝑥 ) = ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
10 |
9
|
a1i |
⊢ ( ( ( 𝑎 ∩ 𝑥 ) = ∅ ∨ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑎 ∩ 𝑥 ) = ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ( ( ¬ ( 𝑎 ∩ 𝑥 ) = ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
11 |
4 6 8 10
|
e022 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , 𝑥 ∈ 𝑎 ▶ ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
12 |
11
|
in2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ( 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
13 |
12
|
gen11 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ∀ 𝑥 ( 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
14 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
15 |
14
|
biimpi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ( ∃ 𝑥 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
16 |
13 15
|
e1a |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ( ∃ 𝑥 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
17 |
|
n0 |
⊢ ( 𝑎 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑎 ) |
18 |
|
imbi1 |
⊢ ( ( 𝑎 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑎 ) → ( ( 𝑎 ≠ ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
19 |
18
|
biimprcd |
⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝑎 → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ( ( 𝑎 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑎 ) → ( 𝑎 ≠ ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
20 |
16 17 19
|
e10 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ( 𝑎 ≠ ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
21 |
|
pm2.27 |
⊢ ( 𝑎 ≠ ∅ → ( ( 𝑎 ≠ ∅ → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
22 |
3 20 21
|
e11 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
23 |
22
|
in1 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
24 |
23
|
ax-gen |
⊢ ∀ 𝑎 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
25 |
|
dfepfr |
⊢ ( E Fr On ↔ ∀ 𝑎 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
26 |
25
|
biimpri |
⊢ ( ∀ 𝑎 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) → E Fr On ) |
27 |
24 26
|
e0a |
⊢ E Fr On |