Metamath Proof Explorer


Theorem onfrALTlem1

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem1 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦𝑎 ( 𝑎𝑦 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 19.8a ( ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑥 ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) )
2 1 a1i ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑥 ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ) )
3 cbvexsv ( ∃ 𝑥 ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) )
4 2 3 syl6ib ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ) )
5 sbsbc ( [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) )
6 onfrALTlem4 ( [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )
7 5 6 bitri ( [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )
8 7 exbii ( ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ∃ 𝑦 ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )
9 4 8 syl6ib ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) )
10 df-rex ( ∃ 𝑦𝑎 ( 𝑎𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )
11 9 10 syl6ibr ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦𝑎 ( 𝑎𝑦 ) = ∅ ) )