| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.8a |
⊢ ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑥 ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑥 ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) ) |
| 3 |
|
cbvexsv |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 4 |
2 3
|
imbitrdi |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) ) |
| 5 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 6 |
|
onfrALTlem4 |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 7 |
5 6
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 9 |
4 8
|
imbitrdi |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 10 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 11 |
9 10
|
imbitrrdi |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |