Metamath Proof Explorer


Theorem onfrALTlem2

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem2 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦𝑎 ( 𝑎𝑦 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧 ∈ ( 𝑎𝑦 ) )
2 1 2a1i ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧 ∈ ( 𝑎𝑦 ) ) ) )
3 inss2 ( 𝑎𝑦 ) ⊆ 𝑦
4 3 sseli ( 𝑧 ∈ ( 𝑎𝑦 ) → 𝑧𝑦 )
5 2 4 syl8 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧𝑦 ) ) )
6 inss1 ( 𝑎𝑦 ) ⊆ 𝑎
7 6 sseli ( 𝑧 ∈ ( 𝑎𝑦 ) → 𝑧𝑎 )
8 2 7 syl8 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧𝑎 ) ) )
9 simpl ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ On )
10 simpl ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → 𝑥𝑎 )
11 ssel ( 𝑎 ⊆ On → ( 𝑥𝑎𝑥 ∈ On ) )
12 9 10 11 syl2im ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → 𝑥 ∈ On ) )
13 eloni ( 𝑥 ∈ On → Ord 𝑥 )
14 12 13 syl6 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → Ord 𝑥 ) )
15 ordtr ( Ord 𝑥 → Tr 𝑥 )
16 14 15 syl6 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → Tr 𝑥 ) )
17 simpll ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑦 ∈ ( 𝑎𝑥 ) )
18 17 2a1i ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑦 ∈ ( 𝑎𝑥 ) ) ) )
19 inss2 ( 𝑎𝑥 ) ⊆ 𝑥
20 19 sseli ( 𝑦 ∈ ( 𝑎𝑥 ) → 𝑦𝑥 )
21 18 20 syl8 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑦𝑥 ) ) )
22 trel ( Tr 𝑥 → ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
23 22 expcomd ( Tr 𝑥 → ( 𝑦𝑥 → ( 𝑧𝑦𝑧𝑥 ) ) )
24 16 21 5 23 ee233 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧𝑥 ) ) )
25 elin ( 𝑧 ∈ ( 𝑎𝑥 ) ↔ ( 𝑧𝑎𝑧𝑥 ) )
26 25 simplbi2 ( 𝑧𝑎 → ( 𝑧𝑥𝑧 ∈ ( 𝑎𝑥 ) ) )
27 8 24 26 ee33 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧 ∈ ( 𝑎𝑥 ) ) ) )
28 elin ( 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ↔ ( 𝑧 ∈ ( 𝑎𝑥 ) ∧ 𝑧𝑦 ) )
29 28 simplbi2com ( 𝑧𝑦 → ( 𝑧 ∈ ( 𝑎𝑥 ) → 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) )
30 5 27 29 ee33 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎𝑦 ) ) → 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) ) )
31 30 exp4a ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑧 ∈ ( 𝑎𝑦 ) → 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) ) ) )
32 31 ggen31 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ∀ 𝑧 ( 𝑧 ∈ ( 𝑎𝑦 ) → 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) ) ) )
33 dfss2 ( ( 𝑎𝑦 ) ⊆ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝑎𝑦 ) → 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) )
34 33 biimpri ( ∀ 𝑧 ( 𝑧 ∈ ( 𝑎𝑦 ) → 𝑧 ∈ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) → ( 𝑎𝑦 ) ⊆ ( ( 𝑎𝑥 ) ∩ 𝑦 ) )
35 32 34 syl8 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎𝑦 ) ⊆ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ) ) )
36 simpr ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
37 36 2a1i ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ) )
38 sseq0 ( ( ( 𝑎𝑦 ) ⊆ ( ( 𝑎𝑥 ) ∩ 𝑦 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎𝑦 ) = ∅ )
39 38 ex ( ( 𝑎𝑦 ) ⊆ ( ( 𝑎𝑥 ) ∩ 𝑦 ) → ( ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ → ( 𝑎𝑦 ) = ∅ ) )
40 35 37 39 ee33 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎𝑦 ) = ∅ ) ) )
41 simpl ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎𝑥 ) )
42 41 2a1i ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎𝑥 ) ) ) )
43 inss1 ( 𝑎𝑥 ) ⊆ 𝑎
44 43 sseli ( 𝑦 ∈ ( 𝑎𝑥 ) → 𝑦𝑎 )
45 42 44 syl8 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦𝑎 ) ) )
46 pm3.21 ( ( 𝑎𝑦 ) = ∅ → ( 𝑦𝑎 → ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) )
47 40 45 46 ee33 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) ) )
48 47 alrimdv ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) ) )
49 onfrALTlem3 ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
50 df-rex ( ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
51 49 50 syl6ib ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) ) )
52 exim ( ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) → ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) )
53 48 51 52 syl6c ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) ) )
54 df-rex ( ∃ 𝑦𝑎 ( 𝑎𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )
55 53 54 syl6ibr ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥𝑎 ∧ ¬ ( 𝑎𝑥 ) = ∅ ) → ∃ 𝑦𝑎 ( 𝑎𝑦 ) = ∅ ) )