Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) |
2 |
1
|
2a1i |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ) ) |
3 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝑦 ) ⊆ 𝑦 |
4 |
3
|
sseli |
⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ 𝑦 ) |
5 |
2 4
|
syl8 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑦 ) ) ) |
6 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑦 ) ⊆ 𝑎 |
7 |
6
|
sseli |
⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ 𝑎 ) |
8 |
2 7
|
syl8 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑎 ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ On ) |
10 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ 𝑎 ) |
11 |
|
ssel |
⊢ ( 𝑎 ⊆ On → ( 𝑥 ∈ 𝑎 → 𝑥 ∈ On ) ) |
12 |
9 10 11
|
syl2im |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ On ) ) |
13 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
14 |
12 13
|
syl6 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → Ord 𝑥 ) ) |
15 |
|
ordtr |
⊢ ( Ord 𝑥 → Tr 𝑥 ) |
16 |
14 15
|
syl6 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → Tr 𝑥 ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
18 |
17
|
2a1i |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) ) ) |
19 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 |
20 |
19
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
21 |
18 20
|
syl8 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ 𝑥 ) ) ) |
22 |
|
trel |
⊢ ( Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
23 |
22
|
expcomd |
⊢ ( Tr 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
24 |
16 21 5 23
|
ee233 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑥 ) ) ) |
25 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ↔ ( 𝑧 ∈ 𝑎 ∧ 𝑧 ∈ 𝑥 ) ) |
26 |
25
|
simplbi2 |
⊢ ( 𝑧 ∈ 𝑎 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ) ) |
27 |
8 24 26
|
ee33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ) ) ) |
28 |
|
elin |
⊢ ( 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ∧ 𝑧 ∈ 𝑦 ) ) |
29 |
28
|
simplbi2com |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
30 |
5 27 29
|
ee33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) |
31 |
30
|
exp4a |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) ) |
32 |
31
|
ggen31 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) ) |
33 |
|
dfss2 |
⊢ ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
34 |
33
|
biimpri |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) → ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) |
35 |
32 34
|
syl8 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) ) |
36 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
37 |
36
|
2a1i |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) ) |
38 |
|
sseq0 |
⊢ ( ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) = ∅ ) |
39 |
38
|
ex |
⊢ ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) → ( ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ → ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
40 |
35 37 39
|
ee33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
41 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
42 |
41
|
2a1i |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) ) ) |
43 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑎 |
44 |
43
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑦 ∈ 𝑎 ) |
45 |
42 44
|
syl8 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ 𝑎 ) ) ) |
46 |
|
pm3.21 |
⊢ ( ( 𝑎 ∩ 𝑦 ) = ∅ → ( 𝑦 ∈ 𝑎 → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
47 |
40 45 46
|
ee33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) ) |
48 |
47
|
alrimdv |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) ) |
49 |
|
onfrALTlem3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
50 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
51 |
49 50
|
syl6ib |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) ) |
52 |
|
exim |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) → ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
53 |
48 51 52
|
syl6c |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
54 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
55 |
53 54
|
syl6ibr |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |