Metamath Proof Explorer


Theorem onfrALTlem4

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem4 ( [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 sbcan ( [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥𝑎[ 𝑦 / 𝑥 ] ( 𝑎𝑥 ) = ∅ ) )
2 sbcel1v ( [ 𝑦 / 𝑥 ] 𝑥𝑎𝑦𝑎 )
3 vex 𝑦 ∈ V
4 sbceqg ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( 𝑎𝑥 ) = ∅ ↔ 𝑦 / 𝑥 ( 𝑎𝑥 ) = 𝑦 / 𝑥 ∅ ) )
5 3 4 ax-mp ( [ 𝑦 / 𝑥 ] ( 𝑎𝑥 ) = ∅ ↔ 𝑦 / 𝑥 ( 𝑎𝑥 ) = 𝑦 / 𝑥 ∅ )
6 csbin 𝑦 / 𝑥 ( 𝑎𝑥 ) = ( 𝑦 / 𝑥 𝑎 𝑦 / 𝑥 𝑥 )
7 csbconstg ( 𝑦 ∈ V → 𝑦 / 𝑥 𝑎 = 𝑎 )
8 3 7 ax-mp 𝑦 / 𝑥 𝑎 = 𝑎
9 csbvarg ( 𝑦 ∈ V → 𝑦 / 𝑥 𝑥 = 𝑦 )
10 3 9 ax-mp 𝑦 / 𝑥 𝑥 = 𝑦
11 8 10 ineq12i ( 𝑦 / 𝑥 𝑎 𝑦 / 𝑥 𝑥 ) = ( 𝑎𝑦 )
12 6 11 eqtri 𝑦 / 𝑥 ( 𝑎𝑥 ) = ( 𝑎𝑦 )
13 csb0 𝑦 / 𝑥 ∅ = ∅
14 12 13 eqeq12i ( 𝑦 / 𝑥 ( 𝑎𝑥 ) = 𝑦 / 𝑥 ∅ ↔ ( 𝑎𝑦 ) = ∅ )
15 5 14 bitri ( [ 𝑦 / 𝑥 ] ( 𝑎𝑥 ) = ∅ ↔ ( 𝑎𝑦 ) = ∅ )
16 2 15 anbi12i ( ( [ 𝑦 / 𝑥 ] 𝑥𝑎[ 𝑦 / 𝑥 ] ( 𝑎𝑥 ) = ∅ ) ↔ ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )
17 1 16 bitri ( [ 𝑦 / 𝑥 ] ( 𝑥𝑎 ∧ ( 𝑎𝑥 ) = ∅ ) ↔ ( 𝑦𝑎 ∧ ( 𝑎𝑦 ) = ∅ ) )