Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑎 ∈ V |
2 |
1
|
inex1 |
⊢ ( 𝑎 ∩ 𝑥 ) ∈ V |
3 |
|
sbcimg |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) |
5 |
|
sbcan |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) ↔ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ) ) |
6 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑎 ∩ 𝑥 ) → ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ↔ ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ) ) |
7 |
2 6
|
sbcie |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ↔ ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ) |
8 |
|
df-ne |
⊢ ( 𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅ ) |
9 |
8
|
sbcbii |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ↔ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ) |
10 |
|
sbcng |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ↔ ¬ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 = ∅ ) ) |
11 |
10
|
bicomd |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( ¬ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ) ) |
12 |
2 11
|
ax-mp |
⊢ ( ¬ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ) |
13 |
|
eqsbc1 |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
14 |
2 13
|
ax-mp |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎 ∩ 𝑥 ) = ∅ ) |
15 |
14
|
necon3bbii |
⊢ ( ¬ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) |
16 |
9 12 15
|
3bitr2i |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ↔ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) |
17 |
7 16
|
anbi12i |
⊢ ( ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ) ↔ ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) |
18 |
5 17
|
bitri |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) ↔ ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) |
19 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ) |
20 |
19
|
sbcbii |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ↔ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ) |
21 |
|
sbcan |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑦 ∈ 𝑏 ∧ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ∩ 𝑦 ) = ∅ ) ) |
22 |
|
sbcel2gv |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) ) |
23 |
2 22
|
ax-mp |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
24 |
|
sbceqg |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ∩ 𝑦 ) = ∅ ↔ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ( 𝑏 ∩ 𝑦 ) = ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ∅ ) ) |
25 |
2 24
|
ax-mp |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ∩ 𝑦 ) = ∅ ↔ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ( 𝑏 ∩ 𝑦 ) = ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ∅ ) |
26 |
|
csbin |
⊢ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ( 𝑏 ∩ 𝑦 ) = ( ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑏 ∩ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑦 ) |
27 |
|
csbvarg |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑏 = ( 𝑎 ∩ 𝑥 ) ) |
28 |
2 27
|
ax-mp |
⊢ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑏 = ( 𝑎 ∩ 𝑥 ) |
29 |
|
csbconstg |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑦 = 𝑦 ) |
30 |
2 29
|
ax-mp |
⊢ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑦 = 𝑦 |
31 |
28 30
|
ineq12i |
⊢ ( ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑏 ∩ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ 𝑦 ) = ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) |
32 |
26 31
|
eqtri |
⊢ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ( 𝑏 ∩ 𝑦 ) = ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) |
33 |
|
csb0 |
⊢ ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ∅ = ∅ |
34 |
32 33
|
eqeq12i |
⊢ ( ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ( 𝑏 ∩ 𝑦 ) = ⦋ ( 𝑎 ∩ 𝑥 ) / 𝑏 ⦌ ∅ ↔ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
35 |
25 34
|
bitri |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ∩ 𝑦 ) = ∅ ↔ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
36 |
23 35
|
anbi12i |
⊢ ( ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] 𝑦 ∈ 𝑏 ∧ [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
37 |
21 36
|
bitri |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
38 |
37
|
exbii |
⊢ ( ∃ 𝑦 [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
39 |
|
sbcex2 |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ∃ 𝑦 [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ) |
40 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
41 |
38 39 40
|
3bitr4i |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ( 𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
42 |
20 41
|
bitri |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
43 |
18 42
|
imbi12i |
⊢ ( ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
44 |
4 43
|
bitri |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |