Metamath Proof Explorer


Theorem onfrALTlem5

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem5 ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 vex 𝑎 ∈ V
2 1 inex1 ( 𝑎𝑥 ) ∈ V
3 sbcimg ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ) )
4 2 3 ax-mp ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) )
5 sbcan ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎𝑥 ) ∧ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ) )
6 sseq1 ( 𝑏 = ( 𝑎𝑥 ) → ( 𝑏 ⊆ ( 𝑎𝑥 ) ↔ ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ) )
7 2 6 sbcie ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎𝑥 ) ↔ ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) )
8 df-ne ( 𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅ )
9 8 sbcbii ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ )
10 sbcng ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ↔ ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ) )
11 10 bicomd ( ( 𝑎𝑥 ) ∈ V → ( ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ) )
12 2 11 ax-mp ( ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ )
13 eqsbc1 ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎𝑥 ) = ∅ ) )
14 2 13 ax-mp ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎𝑥 ) = ∅ )
15 14 necon3bbii ( ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎𝑥 ) ≠ ∅ )
16 9 12 15 3bitr2i ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ↔ ( 𝑎𝑥 ) ≠ ∅ )
17 7 16 anbi12i ( ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎𝑥 ) ∧ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ) ↔ ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) )
18 5 17 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) ↔ ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) )
19 df-rex ( ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) )
20 19 sbcbii ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ]𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) )
21 sbcan ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏[ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ) )
22 sbcel2gv ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏𝑦 ∈ ( 𝑎𝑥 ) ) )
23 2 22 ax-mp ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏𝑦 ∈ ( 𝑎𝑥 ) )
24 sbceqg ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ↔ ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( 𝑎𝑥 ) / 𝑏 ∅ ) )
25 2 24 ax-mp ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ↔ ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( 𝑎𝑥 ) / 𝑏 ∅ )
26 csbin ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( ( 𝑎𝑥 ) / 𝑏 𝑏 ( 𝑎𝑥 ) / 𝑏 𝑦 )
27 csbvarg ( ( 𝑎𝑥 ) ∈ V → ( 𝑎𝑥 ) / 𝑏 𝑏 = ( 𝑎𝑥 ) )
28 2 27 ax-mp ( 𝑎𝑥 ) / 𝑏 𝑏 = ( 𝑎𝑥 )
29 csbconstg ( ( 𝑎𝑥 ) ∈ V → ( 𝑎𝑥 ) / 𝑏 𝑦 = 𝑦 )
30 2 29 ax-mp ( 𝑎𝑥 ) / 𝑏 𝑦 = 𝑦
31 28 30 ineq12i ( ( 𝑎𝑥 ) / 𝑏 𝑏 ( 𝑎𝑥 ) / 𝑏 𝑦 ) = ( ( 𝑎𝑥 ) ∩ 𝑦 )
32 26 31 eqtri ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( ( 𝑎𝑥 ) ∩ 𝑦 )
33 csb0 ( 𝑎𝑥 ) / 𝑏 ∅ = ∅
34 32 33 eqeq12i ( ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( 𝑎𝑥 ) / 𝑏 ∅ ↔ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
35 25 34 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ↔ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
36 23 35 anbi12i ( ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏[ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
37 21 36 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
38 37 exbii ( ∃ 𝑦 [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
39 sbcex2 ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ∃ 𝑦 [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) )
40 df-rex ( ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
41 38 39 40 3bitr4i ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
42 20 41 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
43 18 42 imbi12i ( ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
44 4 43 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )