Metamath Proof Explorer


Theorem onfrALTlem5VD

Description: Virtual deduction proof of onfrALTlem5 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 is onfrALTlem5VD without virtual deductions and was automatically derived from onfrALTlem5VD .

1:: |- a e.V
2:1: |- ( a i^i x ) e. V
3:2: |- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) )
4:3: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> -. ( a i^i x ) = (/) )
5:: |- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x ) = (/) )
6:4,5: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) =/= (/) )
7:2: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) )
8:: |- ( b =/= (/) <-> -. b = (/) )
9:8: |- A. b ( b =/= (/) <-> -. b = (/) )
10:2,9: |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> [. ( a i^i x ) / b ]. -. b = (/) )
11:7,10: |- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. b =/= (/) )
12:6,11: |- ( [. ( a i^i x ) / b ]. b =/= (/) <-> ( a i^i x ) =/= (/) )
13:2: |- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) )
14:12,13: |- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) )
15:2: |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) )
16:15,14: |- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) )
17:2: |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y )
18:2: |- [_ ( a i^i x ) / b ]_ b = ( a i^i x )
19:2: |- [_ ( a i^i x ) / b ]_ y = y
20:18,19: |- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y )
21:17,20: |- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( ( a i^i x ) i^i y )
22:2: |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) )
23:2: |- [_ ( a i^i x ) / b ]_ (/) = (/)
24:21,23: |- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) )
25:22,24: |- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> ( ( a i^i x ) i^i y ) = (/) )
26:2: |- ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) )
27:25,26: |- ( ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
28:2: |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) )
29:27,28: |- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
30:29: |- A. y ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
31:30: |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
32:: |- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) )
33:31,32: |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
34:2: |- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) )
35:33,34: |- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
36:: |- ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) )
37:36: |- A. b ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) )
38:2,37: |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) )
39:35,38: |- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) )
40:16,39: |- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
41:2: |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) )
qed:40,41: |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem5VD ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 vex 𝑎 ∈ V
2 1 inex1 ( 𝑎𝑥 ) ∈ V
3 sbcimg ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ) )
4 2 3 e0a ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) )
5 sbcan ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎𝑥 ) ∧ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ) )
6 sseq1 ( 𝑏 = ( 𝑎𝑥 ) → ( 𝑏 ⊆ ( 𝑎𝑥 ) ↔ ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ) )
7 2 6 sbcie ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎𝑥 ) ↔ ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) )
8 df-ne ( 𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅ )
9 8 sbcbii ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ )
10 sbcng ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ↔ ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ) )
11 10 bicomd ( ( 𝑎𝑥 ) ∈ V → ( ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ ) )
12 2 11 e0a ( ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ] ¬ 𝑏 = ∅ )
13 eqsbc3 ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎𝑥 ) = ∅ ) )
14 2 13 e0a ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎𝑥 ) = ∅ )
15 14 necon3bbii ( ¬ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 = ∅ ↔ ( 𝑎𝑥 ) ≠ ∅ )
16 9 12 15 3bitr2i ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ↔ ( 𝑎𝑥 ) ≠ ∅ )
17 7 16 anbi12i ( ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ⊆ ( 𝑎𝑥 ) ∧ [ ( 𝑎𝑥 ) / 𝑏 ] 𝑏 ≠ ∅ ) ↔ ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) )
18 5 17 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) ↔ ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) )
19 df-rex ( ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) )
20 19 sbcbii ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ↔ [ ( 𝑎𝑥 ) / 𝑏 ]𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) )
21 sbcan ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏[ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ) )
22 sbcel2gv ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏𝑦 ∈ ( 𝑎𝑥 ) ) )
23 2 22 e0a ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏𝑦 ∈ ( 𝑎𝑥 ) )
24 sbceqg ( ( 𝑎𝑥 ) ∈ V → ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ↔ ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( 𝑎𝑥 ) / 𝑏 ∅ ) )
25 2 24 e0a ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ↔ ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( 𝑎𝑥 ) / 𝑏 ∅ )
26 csbin ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( ( 𝑎𝑥 ) / 𝑏 𝑏 ( 𝑎𝑥 ) / 𝑏 𝑦 )
27 csbvarg ( ( 𝑎𝑥 ) ∈ V → ( 𝑎𝑥 ) / 𝑏 𝑏 = ( 𝑎𝑥 ) )
28 2 27 e0a ( 𝑎𝑥 ) / 𝑏 𝑏 = ( 𝑎𝑥 )
29 csbconstg ( ( 𝑎𝑥 ) ∈ V → ( 𝑎𝑥 ) / 𝑏 𝑦 = 𝑦 )
30 2 29 e0a ( 𝑎𝑥 ) / 𝑏 𝑦 = 𝑦
31 28 30 ineq12i ( ( 𝑎𝑥 ) / 𝑏 𝑏 ( 𝑎𝑥 ) / 𝑏 𝑦 ) = ( ( 𝑎𝑥 ) ∩ 𝑦 )
32 26 31 eqtri ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( ( 𝑎𝑥 ) ∩ 𝑦 )
33 csb0 ( 𝑎𝑥 ) / 𝑏 ∅ = ∅
34 32 33 eqeq12i ( ( 𝑎𝑥 ) / 𝑏 ( 𝑏𝑦 ) = ( 𝑎𝑥 ) / 𝑏 ∅ ↔ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
35 25 34 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ↔ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
36 23 35 anbi12i ( ( [ ( 𝑎𝑥 ) / 𝑏 ] 𝑦𝑏[ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
37 21 36 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
38 37 exbii ( ∃ 𝑦 [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
39 sbcex2 ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ∃ 𝑦 [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) )
40 df-rex ( ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎𝑥 ) ∧ ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
41 38 39 40 3bitr4i ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦 ( 𝑦𝑏 ∧ ( 𝑏𝑦 ) = ∅ ) ↔ ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
42 20 41 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ )
43 18 42 imbi12i ( ( [ ( 𝑎𝑥 ) / 𝑏 ] ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → [ ( 𝑎𝑥 ) / 𝑏 ]𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )
44 4 43 bitri ( [ ( 𝑎𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦𝑏 ( 𝑏𝑦 ) = ∅ ) ↔ ( ( ( 𝑎𝑥 ) ⊆ ( 𝑎𝑥 ) ∧ ( 𝑎𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎𝑥 ) ( ( 𝑎𝑥 ) ∩ 𝑦 ) = ∅ ) )