Step |
Hyp |
Ref |
Expression |
1 |
|
onfununi.1 |
⊢ ( Lim 𝑦 → ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ) |
2 |
|
onfununi.2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
3 |
|
ssorduni |
⊢ ( 𝑆 ⊆ On → Ord ∪ 𝑆 ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → Ord ∪ 𝑆 ) |
5 |
|
nelneq |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ¬ 𝑥 = ∪ 𝑆 ) |
6 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ⊆ ∪ 𝑆 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ⊆ ∪ 𝑆 ) |
8 |
|
ssel |
⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ On ) ) |
9 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
10 |
8 9
|
syl6 |
⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → Ord 𝑥 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → Ord 𝑥 ) |
12 |
|
ordsseleq |
⊢ ( ( Ord 𝑥 ∧ Ord ∪ 𝑆 ) → ( 𝑥 ⊆ ∪ 𝑆 ↔ ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) ) |
13 |
11 3 12
|
syl2an |
⊢ ( ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑆 ⊆ On ) → ( 𝑥 ⊆ ∪ 𝑆 ↔ ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) ) |
14 |
13
|
anabss1 |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ⊆ ∪ 𝑆 ↔ ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) ) |
15 |
7 14
|
mpbid |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ∪ 𝑆 ∨ 𝑥 = ∪ 𝑆 ) ) |
16 |
15
|
ord |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( ¬ 𝑥 ∈ ∪ 𝑆 → 𝑥 = ∪ 𝑆 ) ) |
17 |
16
|
con1d |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( ¬ 𝑥 = ∪ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) |
18 |
5 17
|
syl5 |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → 𝑥 ∈ ∪ 𝑆 ) ) |
19 |
18
|
exp4b |
⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 → ( ¬ ∪ 𝑆 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) ) ) |
20 |
19
|
pm2.43d |
⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ 𝑆 → ( ¬ ∪ 𝑆 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) ) |
21 |
20
|
com23 |
⊢ ( 𝑆 ⊆ On → ( ¬ ∪ 𝑆 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑆 ) ) |
23 |
22
|
ssrdv |
⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝑆 ) |
24 |
|
ssn0 |
⊢ ( ( 𝑆 ⊆ ∪ 𝑆 ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ≠ ∅ ) |
25 |
23 24
|
sylan |
⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ≠ ∅ ) |
26 |
23
|
unissd |
⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ 𝑆 ⊆ ∪ ∪ 𝑆 ) |
27 |
|
orduniss |
⊢ ( Ord ∪ 𝑆 → ∪ ∪ 𝑆 ⊆ ∪ 𝑆 ) |
28 |
3 27
|
syl |
⊢ ( 𝑆 ⊆ On → ∪ ∪ 𝑆 ⊆ ∪ 𝑆 ) |
29 |
28
|
adantr |
⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ ∪ 𝑆 ⊆ ∪ 𝑆 ) |
30 |
26 29
|
eqssd |
⊢ ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ 𝑆 = ∪ ∪ 𝑆 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 = ∪ ∪ 𝑆 ) |
32 |
|
df-lim |
⊢ ( Lim ∪ 𝑆 ↔ ( Ord ∪ 𝑆 ∧ ∪ 𝑆 ≠ ∅ ∧ ∪ 𝑆 = ∪ ∪ 𝑆 ) ) |
33 |
4 25 31 32
|
syl3anbrc |
⊢ ( ( ( 𝑆 ⊆ On ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → Lim ∪ 𝑆 ) |
34 |
33
|
an32s |
⊢ ( ( ( 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → Lim ∪ 𝑆 ) |
35 |
34
|
3adantl1 |
⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → Lim ∪ 𝑆 ) |
36 |
|
ssonuni |
⊢ ( 𝑆 ∈ 𝑇 → ( 𝑆 ⊆ On → ∪ 𝑆 ∈ On ) ) |
37 |
|
limeq |
⊢ ( 𝑦 = ∪ 𝑆 → ( Lim 𝑦 ↔ Lim ∪ 𝑆 ) ) |
38 |
|
fveq2 |
⊢ ( 𝑦 = ∪ 𝑆 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∪ 𝑆 ) ) |
39 |
|
iuneq1 |
⊢ ( 𝑦 = ∪ 𝑆 → ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
40 |
38 39
|
eqeq12d |
⊢ ( 𝑦 = ∪ 𝑆 → ( ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
41 |
37 40
|
imbi12d |
⊢ ( 𝑦 = ∪ 𝑆 → ( ( Lim 𝑦 → ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐹 ‘ 𝑥 ) ) ↔ ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) ) |
42 |
41 1
|
vtoclg |
⊢ ( ∪ 𝑆 ∈ On → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
43 |
36 42
|
syl6 |
⊢ ( 𝑆 ∈ 𝑇 → ( 𝑆 ⊆ On → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) ) |
44 |
43
|
imp |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ) → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
45 |
44
|
3adant3 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( Lim ∪ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
47 |
35 46
|
mpd |
⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
48 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑆 ↔ ∃ 𝑦 ∈ 𝑆 𝑥 ∈ 𝑦 ) |
49 |
|
ssel |
⊢ ( 𝑆 ⊆ On → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ On ) ) |
50 |
49
|
anim1d |
⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) ) ) |
51 |
|
onelon |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) |
52 |
50 51
|
syl6 |
⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) ) |
53 |
49
|
adantrd |
⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ On ) ) |
54 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
55 |
49 54
|
syl6 |
⊢ ( 𝑆 ⊆ On → ( 𝑦 ∈ 𝑆 → Ord 𝑦 ) ) |
56 |
|
ordelss |
⊢ ( ( Ord 𝑦 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ⊆ 𝑦 ) |
57 |
56
|
a1i |
⊢ ( 𝑆 ⊆ On → ( ( Ord 𝑦 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) |
58 |
55 57
|
syland |
⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) |
59 |
52 53 58
|
3jcad |
⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) ) ) |
60 |
59 2
|
syl6 |
⊢ ( 𝑆 ⊆ On → ( ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
61 |
60
|
expd |
⊢ ( 𝑆 ⊆ On → ( 𝑦 ∈ 𝑆 → ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) ) |
62 |
61
|
reximdvai |
⊢ ( 𝑆 ⊆ On → ( ∃ 𝑦 ∈ 𝑆 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
48 62
|
syl5bi |
⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ ∪ 𝑆 → ∃ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
64 |
|
ssiun |
⊢ ( ∃ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) |
65 |
63 64
|
syl6 |
⊢ ( 𝑆 ⊆ On → ( 𝑥 ∈ ∪ 𝑆 → ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) ) |
66 |
65
|
ralrimiv |
⊢ ( 𝑆 ⊆ On → ∀ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) |
67 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) |
68 |
66 67
|
sylibr |
⊢ ( 𝑆 ⊆ On → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
70 |
69
|
cbviunv |
⊢ ∪ 𝑦 ∈ 𝑆 ( 𝐹 ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) |
71 |
68 70
|
sseqtrdi |
⊢ ( 𝑆 ⊆ On → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
72 |
71
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ∪ 𝑥 ∈ ∪ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
74 |
47 73
|
eqsstrd |
⊢ ( ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) ∧ ¬ ∪ 𝑆 ∈ 𝑆 ) → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
75 |
74
|
ex |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( ¬ ∪ 𝑆 ∈ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) ) |
76 |
|
fveq2 |
⊢ ( 𝑥 = ∪ 𝑆 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ∪ 𝑆 ) ) |
77 |
76
|
ssiun2s |
⊢ ( ∪ 𝑆 ∈ 𝑆 → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
78 |
75 77
|
pm2.61d2 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ‘ ∪ 𝑆 ) ⊆ ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |
79 |
36
|
imp |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ) → ∪ 𝑆 ∈ On ) |
80 |
79
|
3adant3 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ On ) |
81 |
8
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ On ) ) |
82 |
81 6
|
jca2 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) ) ) |
83 |
|
sseq2 |
⊢ ( 𝑦 = ∪ 𝑆 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ∪ 𝑆 ) ) |
84 |
83
|
anbi2d |
⊢ ( 𝑦 = ∪ 𝑆 → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) ) ) |
85 |
38
|
sseq2d |
⊢ ( 𝑦 = ∪ 𝑆 → ( ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) |
86 |
84 85
|
imbi12d |
⊢ ( 𝑦 = ∪ 𝑆 → ( ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) ) |
87 |
2
|
3com12 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
88 |
87
|
3expib |
⊢ ( 𝑦 ∈ On → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
89 |
86 88
|
vtoclga |
⊢ ( ∪ 𝑆 ∈ On → ( ( 𝑥 ∈ On ∧ 𝑥 ⊆ ∪ 𝑆 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) |
90 |
80 82 89
|
sylsyld |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝑥 ∈ 𝑆 → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) ) |
91 |
90
|
ralrimiv |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) |
92 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) |
93 |
91 92
|
sylibr |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑆 ) ) |
94 |
78 93
|
eqssd |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) ) |