Metamath Proof Explorer


Theorem onin

Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995)

Ref Expression
Assertion onin ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ) ∈ On )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 eloni ( 𝐵 ∈ On → Ord 𝐵 )
3 ordin ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴𝐵 ) )
5 simpl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On )
6 inex1g ( 𝐴 ∈ On → ( 𝐴𝐵 ) ∈ V )
7 elong ( ( 𝐴𝐵 ) ∈ V → ( ( 𝐴𝐵 ) ∈ On ↔ Ord ( 𝐴𝐵 ) ) )
8 5 6 7 3syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴𝐵 ) ∈ On ↔ Ord ( 𝐴𝐵 ) ) )
9 4 8 mpbird ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ) ∈ On )