Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | onin | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∩ 𝐵 ) ∈ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
2 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
3 | ordin | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 ∩ 𝐵 ) ) |
5 | simpl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) | |
6 | inex1g | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
7 | elong | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ V → ( ( 𝐴 ∩ 𝐵 ) ∈ On ↔ Ord ( 𝐴 ∩ 𝐵 ) ) ) | |
8 | 5 6 7 | 3syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∩ 𝐵 ) ∈ On ↔ Ord ( 𝐴 ∩ 𝐵 ) ) ) |
9 | 4 8 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∩ 𝐵 ) ∈ On ) |