| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordon | ⊢ Ord  On | 
						
							| 2 |  | tz7.5 | ⊢ ( ( Ord  On  ∧  𝐴  ⊆  On  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∩  𝑥 )  =  ∅ ) | 
						
							| 4 |  | ssel | ⊢ ( 𝐴  ⊆  On  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  On ) ) | 
						
							| 5 | 4 | imdistani | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ⊆  On  ∧  𝑥  ∈  On ) ) | 
						
							| 6 |  | ssel | ⊢ ( 𝐴  ⊆  On  →  ( 𝑧  ∈  𝐴  →  𝑧  ∈  On ) ) | 
						
							| 7 |  | ontri1 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑧  ∈  On )  →  ( 𝑥  ⊆  𝑧  ↔  ¬  𝑧  ∈  𝑥 ) ) | 
						
							| 8 |  | ssel | ⊢ ( 𝑥  ⊆  𝑧  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) | 
						
							| 9 | 7 8 | biimtrrdi | ⊢ ( ( 𝑥  ∈  On  ∧  𝑧  ∈  On )  →  ( ¬  𝑧  ∈  𝑥  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑥  ∈  On  →  ( 𝑧  ∈  On  →  ( ¬  𝑧  ∈  𝑥  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) ) ) | 
						
							| 11 | 6 10 | sylan9 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  On )  →  ( 𝑧  ∈  𝐴  →  ( ¬  𝑧  ∈  𝑥  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) ) ) | 
						
							| 12 | 11 | com4r | ⊢ ( 𝑦  ∈  𝑥  →  ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  On )  →  ( 𝑧  ∈  𝐴  →  ( ¬  𝑧  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) ) ) | 
						
							| 13 | 12 | imp31 | ⊢ ( ( ( 𝑦  ∈  𝑥  ∧  ( 𝐴  ⊆  On  ∧  𝑥  ∈  On ) )  ∧  𝑧  ∈  𝐴 )  →  ( ¬  𝑧  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) | 
						
							| 14 | 13 | ralimdva | ⊢ ( ( 𝑦  ∈  𝑥  ∧  ( 𝐴  ⊆  On  ∧  𝑥  ∈  On ) )  →  ( ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑥  →  ∀ 𝑧  ∈  𝐴 𝑦  ∈  𝑧 ) ) | 
						
							| 15 |  | disj | ⊢ ( ( 𝐴  ∩  𝑥 )  =  ∅  ↔  ∀ 𝑧  ∈  𝐴 ¬  𝑧  ∈  𝑥 ) | 
						
							| 16 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 17 | 16 | elint2 | ⊢ ( 𝑦  ∈  ∩  𝐴  ↔  ∀ 𝑧  ∈  𝐴 𝑦  ∈  𝑧 ) | 
						
							| 18 | 14 15 17 | 3imtr4g | ⊢ ( ( 𝑦  ∈  𝑥  ∧  ( 𝐴  ⊆  On  ∧  𝑥  ∈  On ) )  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  𝑦  ∈  ∩  𝐴 ) ) | 
						
							| 19 | 5 18 | sylan2 | ⊢ ( ( 𝑦  ∈  𝑥  ∧  ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 ) )  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  𝑦  ∈  ∩  𝐴 ) ) | 
						
							| 20 | 19 | exp32 | ⊢ ( 𝑦  ∈  𝑥  →  ( 𝐴  ⊆  On  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  𝑦  ∈  ∩  𝐴 ) ) ) ) | 
						
							| 21 | 20 | com4l | ⊢ ( 𝐴  ⊆  On  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  ∩  𝐴 ) ) ) ) | 
						
							| 22 | 21 | imp32 | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝐴  ∩  𝑥 )  =  ∅ ) )  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  ∩  𝐴 ) ) | 
						
							| 23 | 22 | ssrdv | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝐴  ∩  𝑥 )  =  ∅ ) )  →  𝑥  ⊆  ∩  𝐴 ) | 
						
							| 24 |  | intss1 | ⊢ ( 𝑥  ∈  𝐴  →  ∩  𝐴  ⊆  𝑥 ) | 
						
							| 25 | 24 | ad2antrl | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝐴  ∩  𝑥 )  =  ∅ ) )  →  ∩  𝐴  ⊆  𝑥 ) | 
						
							| 26 | 23 25 | eqssd | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝐴  ∩  𝑥 )  =  ∅ ) )  →  𝑥  =  ∩  𝐴 ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝐴  ∩  𝑥 )  =  ∅ ) )  →  ( 𝑥  ∈  𝐴  ↔  ∩  𝐴  ∈  𝐴 ) ) | 
						
							| 28 | 27 | biimpd | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝐴  ∩  𝑥 )  =  ∅ ) )  →  ( 𝑥  ∈  𝐴  →  ∩  𝐴  ∈  𝐴 ) ) | 
						
							| 29 | 28 | exp32 | ⊢ ( 𝐴  ⊆  On  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  ( 𝑥  ∈  𝐴  →  ∩  𝐴  ∈  𝐴 ) ) ) ) | 
						
							| 30 | 29 | com34 | ⊢ ( 𝐴  ⊆  On  →  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  ∩  𝐴  ∈  𝐴 ) ) ) ) | 
						
							| 31 | 30 | pm2.43d | ⊢ ( 𝐴  ⊆  On  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  →  ∩  𝐴  ∈  𝐴 ) ) ) | 
						
							| 32 | 31 | rexlimdv | ⊢ ( 𝐴  ⊆  On  →  ( ∃ 𝑥  ∈  𝐴 ( 𝐴  ∩  𝑥 )  =  ∅  →  ∩  𝐴  ∈  𝐴 ) ) | 
						
							| 33 | 3 32 | syl5 | ⊢ ( 𝐴  ⊆  On  →  ( ( 𝐴  ⊆  On  ∧  𝐴  ≠  ∅ )  →  ∩  𝐴  ∈  𝐴 ) ) | 
						
							| 34 | 33 | anabsi5 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ≠  ∅ )  →  ∩  𝐴  ∈  𝐴 ) |