Step |
Hyp |
Ref |
Expression |
1 |
|
ordon |
⊢ Ord On |
2 |
|
tz7.5 |
⊢ ( ( Ord On ∧ 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
3 |
1 2
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
4 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) ) |
5 |
4
|
imdistani |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) |
6 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ On ) ) |
7 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑥 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑥 ) ) |
8 |
|
ssel |
⊢ ( 𝑥 ⊆ 𝑧 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
9 |
7 8
|
syl6bir |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑧 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) |
10 |
9
|
ex |
⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ On → ( ¬ 𝑧 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) ) |
11 |
6 10
|
sylan9 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) → ( 𝑧 ∈ 𝐴 → ( ¬ 𝑧 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) ) |
12 |
11
|
com4r |
⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) → ( 𝑧 ∈ 𝐴 → ( ¬ 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) ) |
13 |
12
|
imp31 |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
14 |
13
|
ralimdva |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) → ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑥 → ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) ) |
15 |
|
disj |
⊢ ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑥 ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
16
|
elint2 |
⊢ ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) |
18 |
14 15 17
|
3imtr4g |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ∩ 𝑥 ) = ∅ → 𝑦 ∈ ∩ 𝐴 ) ) |
19 |
5 18
|
sylan2 |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐴 ∩ 𝑥 ) = ∅ → 𝑦 ∈ ∩ 𝐴 ) ) |
20 |
19
|
exp32 |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → 𝑦 ∈ ∩ 𝐴 ) ) ) ) |
21 |
20
|
com4l |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∩ 𝐴 ) ) ) ) |
22 |
21
|
imp32 |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∩ 𝐴 ) ) |
23 |
22
|
ssrdv |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → 𝑥 ⊆ ∩ 𝐴 ) |
24 |
|
intss1 |
⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥 ) |
25 |
24
|
ad2antrl |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ∩ 𝐴 ⊆ 𝑥 ) |
26 |
23 25
|
eqssd |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → 𝑥 = ∩ 𝐴 ) |
27 |
26
|
eleq1d |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ( 𝑥 ∈ 𝐴 ↔ ∩ 𝐴 ∈ 𝐴 ) ) |
28 |
27
|
biimpd |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ 𝐴 ) ) |
29 |
28
|
exp32 |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ 𝐴 ) ) ) ) |
30 |
29
|
com34 |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ∩ 𝐴 ∈ 𝐴 ) ) ) ) |
31 |
30
|
pm2.43d |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ∩ 𝐴 ∈ 𝐴 ) ) ) |
32 |
31
|
rexlimdv |
⊢ ( 𝐴 ⊆ On → ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ → ∩ 𝐴 ∈ 𝐴 ) ) |
33 |
3 32
|
syl5 |
⊢ ( 𝐴 ⊆ On → ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) ) |
34 |
33
|
anabsi5 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) |