Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of TakeutiZaring p. 44. (Contributed by NM, 29-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | oninton | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) | |
2 | 1 | ex | ⊢ ( 𝐴 ⊆ On → ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴 ) ) |
3 | ssel | ⊢ ( 𝐴 ⊆ On → ( ∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On ) ) | |
4 | 2 3 | syld | ⊢ ( 𝐴 ⊆ On → ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ On ) ) |
5 | 4 | imp | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |