Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of TakeutiZaring p. 44. (Contributed by NM, 29-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oninton | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) | |
| 2 | 1 | ex | ⊢ ( 𝐴 ⊆ On → ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴 ) ) |
| 3 | ssel | ⊢ ( 𝐴 ⊆ On → ( ∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On ) ) | |
| 4 | 2 3 | syld | ⊢ ( 𝐴 ⊆ On → ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ On ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |