Metamath Proof Explorer


Theorem oninton

Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of TakeutiZaring p. 44. (Contributed by NM, 29-Jan-1997)

Ref Expression
Assertion oninton ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )

Proof

Step Hyp Ref Expression
1 onint ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
2 1 ex ( 𝐴 ⊆ On → ( 𝐴 ≠ ∅ → 𝐴𝐴 ) )
3 ssel ( 𝐴 ⊆ On → ( 𝐴𝐴 𝐴 ∈ On ) )
4 2 3 syld ( 𝐴 ⊆ On → ( 𝐴 ≠ ∅ → 𝐴 ∈ On ) )
5 4 imp ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )