Metamath Proof Explorer


Theorem onintrab

Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003)

Ref Expression
Assertion onintrab ( { 𝑥 ∈ On ∣ 𝜑 } ∈ V ↔ { 𝑥 ∈ On ∣ 𝜑 } ∈ On )

Proof

Step Hyp Ref Expression
1 intex ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ { 𝑥 ∈ On ∣ 𝜑 } ∈ V )
2 ssrab2 { 𝑥 ∈ On ∣ 𝜑 } ⊆ On
3 oninton ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → { 𝑥 ∈ On ∣ 𝜑 } ∈ On )
4 2 3 mpan ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ → { 𝑥 ∈ On ∣ 𝜑 } ∈ On )
5 1 4 sylbir ( { 𝑥 ∈ On ∣ 𝜑 } ∈ V → { 𝑥 ∈ On ∣ 𝜑 } ∈ On )
6 elex ( { 𝑥 ∈ On ∣ 𝜑 } ∈ On → { 𝑥 ∈ On ∣ 𝜑 } ∈ V )
7 5 6 impbii ( { 𝑥 ∈ On ∣ 𝜑 } ∈ V ↔ { 𝑥 ∈ On ∣ 𝜑 } ∈ On )