Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onintrab | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ V ↔ ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ V ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On | |
| 3 | oninton | ⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) | |
| 4 | 2 3 | mpan | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) |
| 5 | 1 4 | sylbir | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ V → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) |
| 6 | elex | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ V ) | |
| 7 | 5 6 | impbii | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ V ↔ ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ) |