Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵 ) ) |
2 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
3 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝑥 ) ) |
4 |
|
onsssuc |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
5 |
3 4
|
bitr3d |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ∈ 𝑥 ↔ 𝑥 ∈ suc 𝐵 ) ) |
6 |
5
|
con1bid |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥 ) ) |
7 |
2 6
|
sylan |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥 ) ) |
8 |
7
|
biimpd |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥 ) ) |
9 |
8
|
exp31 |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ On → ( ¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥 ) ) ) ) |
10 |
9
|
com23 |
⊢ ( 𝐴 ⊆ On → ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥 ) ) ) ) |
11 |
10
|
imp4b |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵 ) → 𝐵 ∈ 𝑥 ) ) |
12 |
1 11
|
syl5bi |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) → 𝐵 ∈ 𝑥 ) ) |
13 |
12
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵 ∈ 𝑥 ) |
14 |
|
elintg |
⊢ ( 𝐵 ∈ On → ( 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵 ∈ 𝑥 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵 ∈ 𝑥 ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ) |