Metamath Proof Explorer


Theorem onmindif

Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003)

Ref Expression
Assertion onmindif ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → 𝐵 ( 𝐴 ∖ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵 ) )
2 ssel2 ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
3 ontri1 ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥𝐵 ↔ ¬ 𝐵𝑥 ) )
4 onsssuc ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥𝐵𝑥 ∈ suc 𝐵 ) )
5 3 4 bitr3d ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵𝑥𝑥 ∈ suc 𝐵 ) )
6 5 con1bid ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵𝐵𝑥 ) )
7 2 6 sylan ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵𝐵𝑥 ) )
8 7 biimpd ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵𝐵𝑥 ) )
9 8 exp31 ( 𝐴 ⊆ On → ( 𝑥𝐴 → ( 𝐵 ∈ On → ( ¬ 𝑥 ∈ suc 𝐵𝐵𝑥 ) ) ) )
10 9 com23 ( 𝐴 ⊆ On → ( 𝐵 ∈ On → ( 𝑥𝐴 → ( ¬ 𝑥 ∈ suc 𝐵𝐵𝑥 ) ) ) )
11 10 imp4b ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵 ) → 𝐵𝑥 ) )
12 1 11 syl5bi ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) → 𝐵𝑥 ) )
13 12 ralrimiv ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵𝑥 )
14 elintg ( 𝐵 ∈ On → ( 𝐵 ( 𝐴 ∖ suc 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵𝑥 ) )
15 14 adantl ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( 𝐵 ( 𝐴 ∖ suc 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵𝑥 ) )
16 13 15 mpbird ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → 𝐵 ( 𝐴 ∖ suc 𝐵 ) )