Metamath Proof Explorer


Theorem onmindif2

Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003)

Ref Expression
Assertion onmindif2 ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ( 𝐴 ∖ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝑥 ∈ ( 𝐴 ∖ { 𝐴 } ) ↔ ( 𝑥𝐴𝑥 𝐴 ) )
2 onnmin ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → ¬ 𝑥 𝐴 )
3 2 adantlr ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ¬ 𝑥 𝐴 )
4 oninton ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
5 ssel2 ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
6 5 adantlr ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
7 ontri1 ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴 ) )
8 onsseleq ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴𝑥 ↔ ( 𝐴𝑥 𝐴 = 𝑥 ) ) )
9 7 8 bitr3d ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥 ) ) )
10 4 6 9 syl2an2r ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( ¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥 ) ) )
11 3 10 mpbid ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( 𝐴𝑥 𝐴 = 𝑥 ) )
12 11 ord ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( ¬ 𝐴𝑥 𝐴 = 𝑥 ) )
13 eqcom ( 𝐴 = 𝑥𝑥 = 𝐴 )
14 12 13 syl6ib ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( ¬ 𝐴𝑥𝑥 = 𝐴 ) )
15 14 necon1ad ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( 𝑥 𝐴 𝐴𝑥 ) )
16 15 expimpd ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( ( 𝑥𝐴𝑥 𝐴 ) → 𝐴𝑥 ) )
17 1 16 syl5bi ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 ∈ ( 𝐴 ∖ { 𝐴 } ) → 𝐴𝑥 ) )
18 17 ralrimiv ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐴 } ) 𝐴𝑥 )
19 intex ( 𝐴 ≠ ∅ ↔ 𝐴 ∈ V )
20 elintg ( 𝐴 ∈ V → ( 𝐴 ( 𝐴 ∖ { 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐴 } ) 𝐴𝑥 ) )
21 19 20 sylbi ( 𝐴 ≠ ∅ → ( 𝐴 ( 𝐴 ∖ { 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐴 } ) 𝐴𝑥 ) )
22 21 adantl ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ( 𝐴 ∖ { 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐴 } ) 𝐴𝑥 ) )
23 18 22 mpbird ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ( 𝐴 ∖ { 𝐴 } ) )