| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∩ 𝐴 ) ) |
| 2 |
|
onnmin |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ∩ 𝐴 ) |
| 3 |
2
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ∩ 𝐴 ) |
| 4 |
|
oninton |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |
| 5 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 6 |
5
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 7 |
|
ontri1 |
⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴 ) ) |
| 8 |
|
onsseleq |
⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∩ 𝐴 ⊆ 𝑥 ↔ ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) ) |
| 9 |
7 8
|
bitr3d |
⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ¬ 𝑥 ∈ ∩ 𝐴 ↔ ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) ) |
| 10 |
4 6 9
|
syl2an2r |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ ∩ 𝐴 ↔ ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) ) |
| 11 |
3 10
|
mpbid |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥 ) ) |
| 12 |
11
|
ord |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ∩ 𝐴 ∈ 𝑥 → ∩ 𝐴 = 𝑥 ) ) |
| 13 |
|
eqcom |
⊢ ( ∩ 𝐴 = 𝑥 ↔ 𝑥 = ∩ 𝐴 ) |
| 14 |
12 13
|
imbitrdi |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ∩ 𝐴 ∈ 𝑥 → 𝑥 = ∩ 𝐴 ) ) |
| 15 |
14
|
necon1ad |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ ∩ 𝐴 → ∩ 𝐴 ∈ 𝑥 ) ) |
| 16 |
15
|
expimpd |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∩ 𝐴 ) → ∩ 𝐴 ∈ 𝑥 ) ) |
| 17 |
1 16
|
biimtrid |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) → ∩ 𝐴 ∈ 𝑥 ) ) |
| 18 |
17
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) |
| 19 |
|
intex |
⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
| 20 |
|
elintg |
⊢ ( ∩ 𝐴 ∈ V → ( ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) ) |
| 21 |
19 20
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∩ 𝐴 } ) ∩ 𝐴 ∈ 𝑥 ) ) |
| 23 |
18 22
|
mpbird |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ ∩ ( 𝐴 ∖ { ∩ 𝐴 } ) ) |