| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabn0 |
⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝜑 ) |
| 2 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On |
| 3 |
|
onint |
⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 4 |
2 3
|
mpan |
⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 5 |
1 4
|
sylbir |
⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 On |
| 7 |
6
|
elrabsf |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ∧ [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) ) |
| 8 |
7
|
simprbi |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } → [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) |
| 9 |
5 8
|
syl |
⊢ ( ∃ 𝑥 ∈ On 𝜑 → [ ∩ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) |