Metamath Proof Explorer


Theorem onminesb

Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)

Ref Expression
Assertion onminesb ( ∃ 𝑥 ∈ On 𝜑[ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 rabn0 ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝜑 )
2 ssrab2 { 𝑥 ∈ On ∣ 𝜑 } ⊆ On
3 onint ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } )
4 2 3 mpan ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ → { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } )
5 1 4 sylbir ( ∃ 𝑥 ∈ On 𝜑 { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } )
6 nfcv 𝑥 On
7 6 elrabsf ( { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( { 𝑥 ∈ On ∣ 𝜑 } ∈ On ∧ [ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 ) )
8 7 simprbi ( { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } → [ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 )
9 5 8 syl ( ∃ 𝑥 ∈ On 𝜑[ { 𝑥 ∈ On ∣ 𝜑 } / 𝑥 ] 𝜑 )