Step |
Hyp |
Ref |
Expression |
1 |
|
peano2 |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) |
2 |
|
nnon |
⊢ ( suc 𝐵 ∈ ω → suc 𝐵 ∈ On ) |
3 |
1 2
|
syl |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ On ) |
4 |
|
omv |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
6 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → suc 𝐵 ∈ ω ) |
7 |
6
|
fvresd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
8 |
5 7
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o suc 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) ) |
9 |
|
ovex |
⊢ ( 𝐴 ·o 𝐵 ) ∈ V |
10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 ·o 𝐵 ) → ( 𝑥 +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) |
12 |
|
ovex |
⊢ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ∈ V |
13 |
10 11 12
|
fvmpt |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
14 |
9 13
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) |
15 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
16 |
|
omv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
17 |
15 16
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
18 |
|
fvres |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
20 |
17 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
22 |
14 21
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
23 |
|
frsuc |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
25 |
22 24
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) ) |
26 |
8 25
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |