| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2 |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) |
| 2 |
|
nnon |
⊢ ( suc 𝐵 ∈ ω → suc 𝐵 ∈ On ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ On ) |
| 4 |
|
omv |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
| 6 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → suc 𝐵 ∈ ω ) |
| 7 |
6
|
fvresd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
| 8 |
5 7
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o suc 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) ) |
| 9 |
|
ovex |
⊢ ( 𝐴 ·o 𝐵 ) ∈ V |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 ·o 𝐵 ) → ( 𝑥 +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) |
| 12 |
|
ovex |
⊢ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ∈ V |
| 13 |
10 11 12
|
fvmpt |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 14 |
9 13
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) |
| 15 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 16 |
|
omv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
| 17 |
15 16
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
| 18 |
|
fvres |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
| 20 |
17 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 22 |
14 21
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 23 |
|
frsuc |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ 𝐵 ) ) ) |
| 25 |
22 24
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ↾ ω ) ‘ suc 𝐵 ) ) |
| 26 |
8 25
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |