Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
onn0
Next ⟩
suceq
Metamath Proof Explorer
Ascii
Structured
Theorem
onn0
Description:
The class of all ordinal numbers is not empty.
(Contributed by
NM
, 17-Sep-1995)
Ref
Expression
Assertion
onn0
⊢
On ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
0elon
⊢
∅ ∈ On
2
1
ne0ii
⊢
On ≠ ∅