Metamath Proof Explorer


Theorem onnbtwn

Description: There is no set between an ordinal number and its successor. Proposition 7.25 of TakeutiZaring p. 41. (Contributed by NM, 9-Jun-1994)

Ref Expression
Assertion onnbtwn ( 𝐴 ∈ On → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 ordnbtwn ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ On → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )