Metamath Proof Explorer


Theorem onnevOLD

Description: Obsolete version of onnev as of 27-May-2024. (Contributed by NM, 16-Jun-2007) (Proof shortened by Mario Carneiro, 10-Jan-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onnevOLD On ≠ V

Proof

Step Hyp Ref Expression
1 snsn0non ¬ { { ∅ } } ∈ On
2 snex { { ∅ } } ∈ V
3 id ( On = V → On = V )
4 2 3 eleqtrrid ( On = V → { { ∅ } } ∈ On )
5 4 necon3bi ( ¬ { { ∅ } } ∈ On → On ≠ V )
6 1 5 ax-mp On ≠ V