Metamath Proof Explorer


Theorem onnmin

Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997)

Ref Expression
Assertion onnmin ( ( 𝐴 ⊆ On ∧ 𝐵𝐴 ) → ¬ 𝐵 𝐴 )

Proof

Step Hyp Ref Expression
1 intss1 ( 𝐵𝐴 𝐴𝐵 )
2 1 adantl ( ( 𝐴 ⊆ On ∧ 𝐵𝐴 ) → 𝐴𝐵 )
3 ne0i ( 𝐵𝐴𝐴 ≠ ∅ )
4 oninton ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
5 3 4 sylan2 ( ( 𝐴 ⊆ On ∧ 𝐵𝐴 ) → 𝐴 ∈ On )
6 ssel2 ( ( 𝐴 ⊆ On ∧ 𝐵𝐴 ) → 𝐵 ∈ On )
7 ontri1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴 ) )
8 5 6 7 syl2anc ( ( 𝐴 ⊆ On ∧ 𝐵𝐴 ) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴 ) )
9 2 8 mpbid ( ( 𝐴 ⊆ On ∧ 𝐵𝐴 ) → ¬ 𝐵 𝐴 )