Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | onnmin | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 ∈ ∩ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 | ⊢ ( 𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵 ) | |
2 | 1 | adantl | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴 ) → ∩ 𝐴 ⊆ 𝐵 ) |
3 | ne0i | ⊢ ( 𝐵 ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
4 | oninton | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) | |
5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴 ) → ∩ 𝐴 ∈ On ) |
6 | ssel2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) | |
7 | ontri1 | ⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴 ) ) | |
8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴 ) → ( ∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴 ) ) |
9 | 2 8 | mpbid | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 ∈ ∩ 𝐴 ) |