| Step | Hyp | Ref | Expression | 
						
							| 1 |  | epweon | ⊢  E   We  On | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝐹 ‘ 𝑦 )  ∈  On  ↔  ( 𝐹 ‘ ∅ )  ∈  On ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  ∈  On  ↔  ( 𝐹 ‘ 𝑧 )  ∈  On ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ suc  𝑧 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑦  =  suc  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  ∈  On  ↔  ( 𝐹 ‘ suc  𝑧 )  ∈  On ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐹 ‘ ∅ )  ∈  On ) | 
						
							| 9 |  | suceq | ⊢ ( 𝑥  =  𝑧  →  suc  𝑥  =  suc  𝑧 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ suc  𝑥 )  =  ( 𝐹 ‘ suc  𝑧 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 12 | 10 11 | eleq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ suc  𝑧 )  ∈  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 13 | 12 | rspcv | ⊢ ( 𝑧  ∈  ω  →  ( ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 )  →  ( 𝐹 ‘ suc  𝑧 )  ∈  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 14 |  | onelon | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  On  ∧  ( 𝐹 ‘ suc  𝑧 )  ∈  ( 𝐹 ‘ 𝑧 ) )  →  ( 𝐹 ‘ suc  𝑧 )  ∈  On ) | 
						
							| 15 | 14 | expcom | ⊢ ( ( 𝐹 ‘ suc  𝑧 )  ∈  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  On  →  ( 𝐹 ‘ suc  𝑧 )  ∈  On ) ) | 
						
							| 16 | 13 15 | syl6 | ⊢ ( 𝑧  ∈  ω  →  ( ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  On  →  ( 𝐹 ‘ suc  𝑧 )  ∈  On ) ) ) | 
						
							| 17 | 16 | adantld | ⊢ ( 𝑧  ∈  ω  →  ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  On  →  ( 𝐹 ‘ suc  𝑧 )  ∈  On ) ) ) | 
						
							| 18 | 3 5 7 8 17 | finds2 | ⊢ ( 𝑦  ∈  ω  →  ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  On ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝑦  ∈  ω  →  ( 𝐹 ‘ 𝑦 )  ∈  On ) ) | 
						
							| 20 | 19 | ralrimiv | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ∀ 𝑦  ∈  ω ( 𝐹 ‘ 𝑦 )  ∈  On ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 22 | 21 | fmpt | ⊢ ( ∀ 𝑦  ∈  ω ( 𝐹 ‘ 𝑦 )  ∈  On  ↔  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) : ω ⟶ On ) | 
						
							| 23 | 20 22 | sylib | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) : ω ⟶ On ) | 
						
							| 24 | 23 | frnd | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ⊆  On ) | 
						
							| 25 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 26 | 23 | fdmd | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  dom  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  =  ω ) | 
						
							| 27 | 25 26 | eleqtrrid | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ∅  ∈  dom  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 | 27 | ne0d | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  dom  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ≠  ∅ ) | 
						
							| 29 |  | dm0rn0 | ⊢ ( dom  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  =  ∅  ↔  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  =  ∅ ) | 
						
							| 30 | 29 | necon3bii | ⊢ ( dom  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ≠  ∅  ↔  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ≠  ∅ ) | 
						
							| 31 | 28 30 | sylib | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ≠  ∅ ) | 
						
							| 32 |  | wefrc | ⊢ ( (  E   We  On  ∧  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ⊆  On  ∧  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ≠  ∅ )  →  ∃ 𝑧  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  𝑧 )  =  ∅ ) | 
						
							| 33 | 1 24 31 32 | mp3an2i | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑧  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  𝑧 )  =  ∅ ) | 
						
							| 34 |  | fvex | ⊢ ( 𝐹 ‘ 𝑤 )  ∈  V | 
						
							| 35 | 34 | rgenw | ⊢ ∀ 𝑤  ∈  ω ( 𝐹 ‘ 𝑤 )  ∈  V | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 37 | 36 | cbvmptv | ⊢ ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑤  ∈  ω  ↦  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 38 |  | ineq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑤 )  →  ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  𝑧 )  =  ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑤 )  →  ( ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  𝑧 )  =  ∅  ↔  ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) ) | 
						
							| 40 | 37 39 | rexrnmptw | ⊢ ( ∀ 𝑤  ∈  ω ( 𝐹 ‘ 𝑤 )  ∈  V  →  ( ∃ 𝑧  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  𝑧 )  =  ∅  ↔  ∃ 𝑤  ∈  ω ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) ) | 
						
							| 41 | 35 40 | ax-mp | ⊢ ( ∃ 𝑧  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  𝑧 )  =  ∅  ↔  ∃ 𝑤  ∈  ω ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) | 
						
							| 42 | 33 41 | sylib | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑤  ∈  ω ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) | 
						
							| 43 |  | peano2 | ⊢ ( 𝑤  ∈  ω  →  suc  𝑤  ∈  ω ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑤  ∈  ω )  →  suc  𝑤  ∈  ω ) | 
						
							| 45 |  | eqid | ⊢ ( 𝐹 ‘ suc  𝑤 )  =  ( 𝐹 ‘ suc  𝑤 ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑦  =  suc  𝑤  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ suc  𝑤 ) ) | 
						
							| 47 | 46 | rspceeqv | ⊢ ( ( suc  𝑤  ∈  ω  ∧  ( 𝐹 ‘ suc  𝑤 )  =  ( 𝐹 ‘ suc  𝑤 ) )  →  ∃ 𝑦  ∈  ω ( 𝐹 ‘ suc  𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 48 | 44 45 47 | sylancl | ⊢ ( ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑤  ∈  ω )  →  ∃ 𝑦  ∈  ω ( 𝐹 ‘ suc  𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 49 |  | fvex | ⊢ ( 𝐹 ‘ suc  𝑤 )  ∈  V | 
						
							| 50 | 21 | elrnmpt | ⊢ ( ( 𝐹 ‘ suc  𝑤 )  ∈  V  →  ( ( 𝐹 ‘ suc  𝑤 )  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑦  ∈  ω ( 𝐹 ‘ suc  𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ ( ( 𝐹 ‘ suc  𝑤 )  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑦  ∈  ω ( 𝐹 ‘ suc  𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 52 | 48 51 | sylibr | ⊢ ( ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑤  ∈  ω )  →  ( 𝐹 ‘ suc  𝑤 )  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 53 |  | suceq | ⊢ ( 𝑥  =  𝑤  →  suc  𝑥  =  suc  𝑤 ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( 𝑥  =  𝑤  →  ( 𝐹 ‘ suc  𝑥 )  =  ( 𝐹 ‘ suc  𝑤 ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 56 | 54 55 | eleq12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ suc  𝑤 )  ∈  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 57 | 56 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 )  ∧  𝑤  ∈  ω )  →  ( 𝐹 ‘ suc  𝑤 )  ∈  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 58 | 57 | adantll | ⊢ ( ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑤  ∈  ω )  →  ( 𝐹 ‘ suc  𝑤 )  ∈  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 59 |  | inelcm | ⊢ ( ( ( 𝐹 ‘ suc  𝑤 )  ∈  ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ suc  𝑤 )  ∈  ( 𝐹 ‘ 𝑤 ) )  →  ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅ ) | 
						
							| 60 | 52 58 59 | syl2anc | ⊢ ( ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑤  ∈  ω )  →  ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  ≠  ∅ ) | 
						
							| 61 | 60 | neneqd | ⊢ ( ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  ∧  𝑤  ∈  ω )  →  ¬  ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) | 
						
							| 62 | 61 | nrexdv | ⊢ ( ( ( 𝐹 ‘ ∅ )  ∈  On  ∧  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) )  →  ¬  ∃ 𝑤  ∈  ω ( ran  ( 𝑦  ∈  ω  ↦  ( 𝐹 ‘ 𝑦 ) )  ∩  ( 𝐹 ‘ 𝑤 ) )  =  ∅ ) | 
						
							| 63 | 42 62 | pm2.65da | ⊢ ( ( 𝐹 ‘ ∅ )  ∈  On  →  ¬  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 64 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  ω ¬  ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 )  ↔  ¬  ∀ 𝑥  ∈  ω ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 65 | 63 64 | sylibr | ⊢ ( ( 𝐹 ‘ ∅ )  ∈  On  →  ∃ 𝑥  ∈  ω ¬  ( 𝐹 ‘ suc  𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) |