Step |
Hyp |
Ref |
Expression |
1 |
|
epweon |
⊢ E We On |
2 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ 𝑦 ) ∈ On ↔ ( 𝐹 ‘ ∅ ) ∈ On ) ) |
4 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ∈ On ↔ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝑧 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑦 = suc 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ∈ On ↔ ( 𝐹 ‘ suc 𝑧 ) ∈ On ) ) |
8 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ∅ ) ∈ On ) |
9 |
|
suceq |
⊢ ( 𝑥 = 𝑧 → suc 𝑥 = suc 𝑧 ) |
10 |
9
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑧 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
12 |
10 11
|
eleq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ suc 𝑧 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
13 |
12
|
rspcv |
⊢ ( 𝑧 ∈ ω → ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ suc 𝑧 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
14 |
|
onelon |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ On ∧ ( 𝐹 ‘ suc 𝑧 ) ∈ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ suc 𝑧 ) ∈ On ) |
15 |
14
|
expcom |
⊢ ( ( 𝐹 ‘ suc 𝑧 ) ∈ ( 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ On → ( 𝐹 ‘ suc 𝑧 ) ∈ On ) ) |
16 |
13 15
|
syl6 |
⊢ ( 𝑧 ∈ ω → ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ On → ( 𝐹 ‘ suc 𝑧 ) ∈ On ) ) ) |
17 |
16
|
adantld |
⊢ ( 𝑧 ∈ ω → ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ On → ( 𝐹 ‘ suc 𝑧 ) ∈ On ) ) ) |
18 |
3 5 7 8 17
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
19 |
18
|
com12 |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑦 ∈ ω → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
20 |
19
|
ralrimiv |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ∈ On ) |
21 |
|
eqid |
⊢ ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) |
22 |
21
|
fmpt |
⊢ ( ∀ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ∈ On ↔ ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) : ω ⟶ On ) |
23 |
20 22
|
sylib |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) : ω ⟶ On ) |
24 |
23
|
frnd |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ⊆ On ) |
25 |
|
peano1 |
⊢ ∅ ∈ ω |
26 |
23
|
fdmd |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → dom ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) = ω ) |
27 |
25 26
|
eleqtrrid |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ∅ ∈ dom ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
28 |
27
|
ne0d |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → dom ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
29 |
|
dm0rn0 |
⊢ ( dom ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) = ∅ ↔ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) = ∅ ) |
30 |
29
|
necon3bii |
⊢ ( dom ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ↔ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
31 |
28 30
|
sylib |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
32 |
|
wefrc |
⊢ ( ( E We On ∧ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ⊆ On ∧ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) → ∃ 𝑧 ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ 𝑧 ) = ∅ ) |
33 |
1 24 31 32
|
mp3an2i |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ 𝑧 ) = ∅ ) |
34 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑤 ) ∈ V |
35 |
34
|
rgenw |
⊢ ∀ 𝑤 ∈ ω ( 𝐹 ‘ 𝑤 ) ∈ V |
36 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
37 |
36
|
cbvmptv |
⊢ ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑤 ∈ ω ↦ ( 𝐹 ‘ 𝑤 ) ) |
38 |
|
ineq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ 𝑧 ) = ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ 𝑧 ) = ∅ ↔ ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
40 |
37 39
|
rexrnmptw |
⊢ ( ∀ 𝑤 ∈ ω ( 𝐹 ‘ 𝑤 ) ∈ V → ( ∃ 𝑧 ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑤 ∈ ω ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
41 |
35 40
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ 𝑧 ) = ∅ ↔ ∃ 𝑤 ∈ ω ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
42 |
33 41
|
sylib |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑤 ∈ ω ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
43 |
|
peano2 |
⊢ ( 𝑤 ∈ ω → suc 𝑤 ∈ ω ) |
44 |
43
|
adantl |
⊢ ( ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ ω ) → suc 𝑤 ∈ ω ) |
45 |
|
eqid |
⊢ ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc 𝑤 ) |
46 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
47 |
46
|
rspceeqv |
⊢ ( ( suc 𝑤 ∈ ω ∧ ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc 𝑤 ) ) → ∃ 𝑦 ∈ ω ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
48 |
44 45 47
|
sylancl |
⊢ ( ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ∃ 𝑦 ∈ ω ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
49 |
|
fvex |
⊢ ( 𝐹 ‘ suc 𝑤 ) ∈ V |
50 |
21
|
elrnmpt |
⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ V → ( ( 𝐹 ‘ suc 𝑤 ) ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ ω ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
51 |
49 50
|
ax-mp |
⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ ω ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
52 |
48 51
|
sylibr |
⊢ ( ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
53 |
|
suceq |
⊢ ( 𝑥 = 𝑤 → suc 𝑥 = suc 𝑤 ) |
54 |
53
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
55 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
56 |
54 55
|
eleq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ suc 𝑤 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
57 |
56
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ ( 𝐹 ‘ 𝑤 ) ) |
58 |
57
|
adantll |
⊢ ( ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ ( 𝐹 ‘ 𝑤 ) ) |
59 |
|
inelcm |
⊢ ( ( ( 𝐹 ‘ suc 𝑤 ) ∈ ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ suc 𝑤 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ ) |
60 |
52 58 59
|
syl2anc |
⊢ ( ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) ≠ ∅ ) |
61 |
60
|
neneqd |
⊢ ( ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ¬ ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
62 |
61
|
nrexdv |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ On ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ¬ ∃ 𝑤 ∈ ω ( ran ( 𝑦 ∈ ω ↦ ( 𝐹 ‘ 𝑦 ) ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
63 |
42 62
|
pm2.65da |
⊢ ( ( 𝐹 ‘ ∅ ) ∈ On → ¬ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
64 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ω ¬ ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
65 |
63 64
|
sylibr |
⊢ ( ( 𝐹 ‘ ∅ ) ∈ On → ∃ 𝑥 ∈ ω ¬ ( 𝐹 ‘ suc 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |