Step |
Hyp |
Ref |
Expression |
1 |
|
endom |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) |
2 |
|
nnfi |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ Fin ) |
3 |
|
domfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ∈ Fin ) |
4 |
|
simpr |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
5 |
3 4
|
jca |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) ) |
6 |
|
domnsymfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
7 |
6
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
8 |
|
php3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
9 |
8
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
10 |
7 9
|
nsyld |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
12 |
11
|
expimpd |
⊢ ( 𝐵 ∈ ω → ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ⊊ 𝐴 ) ) |
13 |
5 12
|
syl5 |
⊢ ( 𝐵 ∈ ω → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ⊊ 𝐴 ) ) |
14 |
2 13
|
mpand |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
16 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
17 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
18 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
19 |
|
ordelpss |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
20 |
19
|
ancoms |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
21 |
20
|
notbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
22 |
18 21
|
bitrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
23 |
16 17 22
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
24 |
15 23
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
25 |
1 24
|
syl5 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
26 |
25
|
3impia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
27 |
|
ensymfib |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵 ) ) |
28 |
2 27
|
syl |
⊢ ( 𝐵 ∈ ω → ( 𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵 ) ) |
29 |
|
endom |
⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) |
30 |
28 29
|
syl6bir |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴 ) ) |
31 |
30
|
imp |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
32 |
31
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
33 |
|
nndomog |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐵 ≼ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
34 |
33
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐵 ≼ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
35 |
34
|
biimp3a |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
36 |
32 35
|
syld3an3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
37 |
26 36
|
eqssd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
38 |
37
|
3expia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
39 |
|
enrefnn |
⊢ ( 𝐵 ∈ ω → 𝐵 ≈ 𝐵 ) |
40 |
|
breq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐵 ) ) |
41 |
39 40
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ω → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
43 |
38 42
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |