| Step |
Hyp |
Ref |
Expression |
| 1 |
|
php5 |
⊢ ( 𝐵 ∈ ω → ¬ 𝐵 ≈ suc 𝐵 ) |
| 2 |
1
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ¬ 𝐵 ≈ suc 𝐵 ) |
| 3 |
|
enen1 |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≈ suc 𝐵 ↔ 𝐵 ≈ suc 𝐵 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( 𝐴 ≈ suc 𝐵 ↔ 𝐵 ≈ suc 𝐵 ) ) |
| 5 |
2 4
|
mtbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ¬ 𝐴 ≈ suc 𝐵 ) |
| 6 |
|
peano2 |
⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) |
| 7 |
|
sssucid |
⊢ 𝐵 ⊆ suc 𝐵 |
| 8 |
|
ssdomg |
⊢ ( suc 𝐵 ∈ ω → ( 𝐵 ⊆ suc 𝐵 → 𝐵 ≼ suc 𝐵 ) ) |
| 9 |
6 7 8
|
mpisyl |
⊢ ( 𝐵 ∈ ω → 𝐵 ≼ suc 𝐵 ) |
| 10 |
|
endomtr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≼ suc 𝐵 ) → 𝐴 ≼ suc 𝐵 ) |
| 11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ≼ suc 𝐵 ) |
| 12 |
11
|
ancoms |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ≼ suc 𝐵 ) |
| 13 |
12
|
a1d |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵 ) → ( ω ⊆ 𝐴 → 𝐴 ≼ suc 𝐵 ) ) |
| 14 |
13
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( ω ⊆ 𝐴 → 𝐴 ≼ suc 𝐵 ) ) |
| 15 |
|
ssel |
⊢ ( ω ⊆ 𝐴 → ( 𝐵 ∈ ω → 𝐵 ∈ 𝐴 ) ) |
| 16 |
15
|
com12 |
⊢ ( 𝐵 ∈ ω → ( ω ⊆ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( ω ⊆ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 18 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 19 |
|
ordelsuc |
⊢ ( ( 𝐵 ∈ ω ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ⊆ 𝐴 ) ) |
| 20 |
18 19
|
sylan2 |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ⊆ 𝐴 ) ) |
| 21 |
17 20
|
sylibd |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( ω ⊆ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) |
| 22 |
|
ssdomg |
⊢ ( 𝐴 ∈ On → ( suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴 ) ) |
| 24 |
21 23
|
syld |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ On ) → ( ω ⊆ 𝐴 → suc 𝐵 ≼ 𝐴 ) ) |
| 25 |
24
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( ω ⊆ 𝐴 → suc 𝐵 ≼ 𝐴 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( ω ⊆ 𝐴 → suc 𝐵 ≼ 𝐴 ) ) |
| 27 |
14 26
|
jcad |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( ω ⊆ 𝐴 → ( 𝐴 ≼ suc 𝐵 ∧ suc 𝐵 ≼ 𝐴 ) ) ) |
| 28 |
|
sbth |
⊢ ( ( 𝐴 ≼ suc 𝐵 ∧ suc 𝐵 ≼ 𝐴 ) → 𝐴 ≈ suc 𝐵 ) |
| 29 |
27 28
|
syl6 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( ω ⊆ 𝐴 → 𝐴 ≈ suc 𝐵 ) ) |
| 30 |
5 29
|
mtod |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ¬ ω ⊆ 𝐴 ) |
| 31 |
|
ordom |
⊢ Ord ω |
| 32 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord 𝐴 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
| 33 |
31 18 32
|
sylancr |
⊢ ( 𝐴 ∈ On → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
| 34 |
33
|
con2bid |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴 ) ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( 𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴 ) ) |
| 36 |
30 35
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ ω ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ∈ ω ) |
| 38 |
36 37
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) |
| 39 |
|
nneneq |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 40 |
39
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
| 41 |
38 40
|
sylancom |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
| 42 |
41
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 43 |
|
eqeng |
⊢ ( 𝐴 ∈ On → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 45 |
42 44
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |