Step |
Hyp |
Ref |
Expression |
1 |
|
onovuni.1 |
⊢ ( Lim 𝑦 → ( 𝐴 𝐹 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐴 𝐹 𝑥 ) ) |
2 |
|
onovuni.2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐴 𝐹 𝑥 ) ⊆ ( 𝐴 𝐹 𝑦 ) ) |
3 |
|
dfiun3g |
⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ 𝑧 ∈ 𝐾 𝐿 ) = ( 𝐴 𝐹 ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → 𝐾 ∈ 𝑇 ) |
7 |
|
mptexg |
⊢ ( 𝐾 ∈ 𝑇 → ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ) |
8 |
|
rnexg |
⊢ ( ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ) |
9 |
6 7 8
|
3syl |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ) |
10 |
|
simp2 |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ) |
11 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) |
12 |
11
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ↔ ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) : 𝐾 ⟶ On ) |
13 |
10 12
|
sylib |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) : 𝐾 ⟶ On ) |
14 |
13
|
frnd |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ⊆ On ) |
15 |
|
dmmptg |
⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On → dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = 𝐾 ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = 𝐾 ) |
17 |
|
simp3 |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → 𝐾 ≠ ∅ ) |
18 |
16 17
|
eqnetrd |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) |
19 |
|
dm0rn0 |
⊢ ( dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = ∅ ↔ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = ∅ ) |
20 |
19
|
necon3bii |
⊢ ( dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ↔ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) |
21 |
18 20
|
sylib |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) |
22 |
1 2
|
onovuni |
⊢ ( ( ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ∧ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ⊆ On ∧ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) → ( 𝐴 𝐹 ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) = ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ) |
23 |
9 14 21 22
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) = ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ) |
24 |
|
oveq2 |
⊢ ( 𝑥 = 𝐿 → ( 𝐴 𝐹 𝑥 ) = ( 𝐴 𝐹 𝐿 ) ) |
25 |
24
|
eleq2d |
⊢ ( 𝑥 = 𝐿 → ( 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ↔ 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) ) |
26 |
11 25
|
rexrnmptw |
⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On → ( ∃ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐾 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( ∃ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐾 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) ) |
28 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ↔ ∃ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ) |
29 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ↔ ∃ 𝑧 ∈ 𝐾 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) |
30 |
27 28 29
|
3bitr4g |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝑤 ∈ ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ↔ 𝑤 ∈ ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) ) |
31 |
30
|
eqrdv |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) = ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) |
32 |
5 23 31
|
3eqtrd |
⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ 𝑧 ∈ 𝐾 𝐿 ) = ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) |