| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onovuni.1 | ⊢ ( Lim  𝑦  →  ( 𝐴 𝐹 𝑦 )  =  ∪  𝑥  ∈  𝑦 ( 𝐴 𝐹 𝑥 ) ) | 
						
							| 2 |  | onovuni.2 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  On  ∧  𝑥  ⊆  𝑦 )  →  ( 𝐴 𝐹 𝑥 )  ⊆  ( 𝐴 𝐹 𝑦 ) ) | 
						
							| 3 |  | dfiun3g | ⊢ ( ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  →  ∪  𝑧  ∈  𝐾 𝐿  =  ∪  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ∪  𝑧  ∈  𝐾 𝐿  =  ∪  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ( 𝐴 𝐹 ∪  𝑧  ∈  𝐾 𝐿 )  =  ( 𝐴 𝐹 ∪  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  𝐾  ∈  𝑇 ) | 
						
							| 7 |  | mptexg | ⊢ ( 𝐾  ∈  𝑇  →  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ∈  V ) | 
						
							| 8 |  | rnexg | ⊢ ( ( 𝑧  ∈  𝐾  ↦  𝐿 )  ∈  V  →  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ∈  V ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ∈  V ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑧  ∈  𝐾  ↦  𝐿 )  =  ( 𝑧  ∈  𝐾  ↦  𝐿 ) | 
						
							| 12 | 11 | fmpt | ⊢ ( ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ↔  ( 𝑧  ∈  𝐾  ↦  𝐿 ) : 𝐾 ⟶ On ) | 
						
							| 13 | 10 12 | sylib | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ( 𝑧  ∈  𝐾  ↦  𝐿 ) : 𝐾 ⟶ On ) | 
						
							| 14 | 13 | frnd | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ⊆  On ) | 
						
							| 15 |  | dmmptg | ⊢ ( ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  →  dom  ( 𝑧  ∈  𝐾  ↦  𝐿 )  =  𝐾 ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  dom  ( 𝑧  ∈  𝐾  ↦  𝐿 )  =  𝐾 ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  𝐾  ≠  ∅ ) | 
						
							| 18 | 16 17 | eqnetrd | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  dom  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ≠  ∅ ) | 
						
							| 19 |  | dm0rn0 | ⊢ ( dom  ( 𝑧  ∈  𝐾  ↦  𝐿 )  =  ∅  ↔  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  =  ∅ ) | 
						
							| 20 | 19 | necon3bii | ⊢ ( dom  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ≠  ∅  ↔  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ≠  ∅ ) | 
						
							| 21 | 18 20 | sylib | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ≠  ∅ ) | 
						
							| 22 | 1 2 | onovuni | ⊢ ( ( ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ∈  V  ∧  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ⊆  On  ∧  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 )  ≠  ∅ )  →  ( 𝐴 𝐹 ∪  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) )  =  ∪  𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ( 𝐴 𝐹 𝑥 ) ) | 
						
							| 23 | 9 14 21 22 | syl3anc | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ( 𝐴 𝐹 ∪  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) )  =  ∪  𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ( 𝐴 𝐹 𝑥 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑥  =  𝐿  →  ( 𝐴 𝐹 𝑥 )  =  ( 𝐴 𝐹 𝐿 ) ) | 
						
							| 25 | 24 | eleq2d | ⊢ ( 𝑥  =  𝐿  →  ( 𝑤  ∈  ( 𝐴 𝐹 𝑥 )  ↔  𝑤  ∈  ( 𝐴 𝐹 𝐿 ) ) ) | 
						
							| 26 | 11 25 | rexrnmptw | ⊢ ( ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  →  ( ∃ 𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) 𝑤  ∈  ( 𝐴 𝐹 𝑥 )  ↔  ∃ 𝑧  ∈  𝐾 𝑤  ∈  ( 𝐴 𝐹 𝐿 ) ) ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ( ∃ 𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) 𝑤  ∈  ( 𝐴 𝐹 𝑥 )  ↔  ∃ 𝑧  ∈  𝐾 𝑤  ∈  ( 𝐴 𝐹 𝐿 ) ) ) | 
						
							| 28 |  | eliun | ⊢ ( 𝑤  ∈  ∪  𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ( 𝐴 𝐹 𝑥 )  ↔  ∃ 𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) 𝑤  ∈  ( 𝐴 𝐹 𝑥 ) ) | 
						
							| 29 |  | eliun | ⊢ ( 𝑤  ∈  ∪  𝑧  ∈  𝐾 ( 𝐴 𝐹 𝐿 )  ↔  ∃ 𝑧  ∈  𝐾 𝑤  ∈  ( 𝐴 𝐹 𝐿 ) ) | 
						
							| 30 | 27 28 29 | 3bitr4g | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ( 𝑤  ∈  ∪  𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ( 𝐴 𝐹 𝑥 )  ↔  𝑤  ∈  ∪  𝑧  ∈  𝐾 ( 𝐴 𝐹 𝐿 ) ) ) | 
						
							| 31 | 30 | eqrdv | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ∪  𝑥  ∈  ran  ( 𝑧  ∈  𝐾  ↦  𝐿 ) ( 𝐴 𝐹 𝑥 )  =  ∪  𝑧  ∈  𝐾 ( 𝐴 𝐹 𝐿 ) ) | 
						
							| 32 | 5 23 31 | 3eqtrd | ⊢ ( ( 𝐾  ∈  𝑇  ∧  ∀ 𝑧  ∈  𝐾 𝐿  ∈  On  ∧  𝐾  ≠  ∅ )  →  ( 𝐴 𝐹 ∪  𝑧  ∈  𝐾 𝐿 )  =  ∪  𝑧  ∈  𝐾 ( 𝐴 𝐹 𝐿 ) ) |