Step |
Hyp |
Ref |
Expression |
1 |
|
onovuni.1 |
⊢ ( Lim 𝑦 → ( 𝐴 𝐹 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐴 𝐹 𝑥 ) ) |
2 |
|
onovuni.2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐴 𝐹 𝑥 ) ⊆ ( 𝐴 𝐹 𝑦 ) ) |
3 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧 ) = ( 𝐴 𝐹 𝑦 ) ) |
4 |
|
eqid |
⊢ ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) = ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) |
5 |
|
ovex |
⊢ ( 𝐴 𝐹 𝑦 ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑦 ∈ V → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) |
7 |
6
|
elv |
⊢ ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑦 ) = ( 𝐴 𝐹 𝑦 ) |
8 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐴 𝐹 𝑧 ) = ( 𝐴 𝐹 𝑥 ) ) |
9 |
|
ovex |
⊢ ( 𝐴 𝐹 𝑥 ) ∈ V |
10 |
8 4 9
|
fvmpt |
⊢ ( 𝑥 ∈ V → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ( 𝐴 𝐹 𝑥 ) ) |
11 |
10
|
elv |
⊢ ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ( 𝐴 𝐹 𝑥 ) |
12 |
11
|
a1i |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ( 𝐴 𝐹 𝑥 ) ) |
13 |
12
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝑦 ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐴 𝐹 𝑥 ) |
14 |
1 7 13
|
3eqtr4g |
⊢ ( Lim 𝑦 → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) ) |
15 |
2 11 7
|
3sstr4g |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) ⊆ ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑦 ) ) |
16 |
14 15
|
onfununi |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ ∪ 𝑆 ) = ∪ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) ) |
17 |
|
uniexg |
⊢ ( 𝑆 ∈ 𝑇 → ∪ 𝑆 ∈ V ) |
18 |
|
oveq2 |
⊢ ( 𝑧 = ∪ 𝑆 → ( 𝐴 𝐹 𝑧 ) = ( 𝐴 𝐹 ∪ 𝑆 ) ) |
19 |
|
ovex |
⊢ ( 𝐴 𝐹 ∪ 𝑆 ) ∈ V |
20 |
18 4 19
|
fvmpt |
⊢ ( ∪ 𝑆 ∈ V → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ ∪ 𝑆 ) = ( 𝐴 𝐹 ∪ 𝑆 ) ) |
21 |
17 20
|
syl |
⊢ ( 𝑆 ∈ 𝑇 → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ ∪ 𝑆 ) = ( 𝐴 𝐹 ∪ 𝑆 ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ ∪ 𝑆 ) = ( 𝐴 𝐹 ∪ 𝑆 ) ) |
23 |
11
|
a1i |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ( 𝐴 𝐹 𝑥 ) ) |
24 |
23
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐴 𝐹 𝑥 ) |
25 |
24
|
a1i |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∪ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ V ↦ ( 𝐴 𝐹 𝑧 ) ) ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐴 𝐹 𝑥 ) ) |
26 |
16 22 25
|
3eqtr3d |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ( 𝐴 𝐹 ∪ 𝑆 ) = ∪ 𝑥 ∈ 𝑆 ( 𝐴 𝐹 𝑥 ) ) |