Metamath Proof Explorer


Theorem onsdom

Description: Any well-orderable set is strictly dominated by an ordinal number. (Contributed by Jeff Hankins, 22-Oct-2009) (Proof shortened by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion onsdom ( 𝐴 ∈ dom card → ∃ 𝑥 ∈ On 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 harcl ( har ‘ 𝐴 ) ∈ On
2 harsdom ( 𝐴 ∈ dom card → 𝐴 ≺ ( har ‘ 𝐴 ) )
3 breq2 ( 𝑥 = ( har ‘ 𝐴 ) → ( 𝐴𝑥𝐴 ≺ ( har ‘ 𝐴 ) ) )
4 3 rspcev ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝐴 ≺ ( har ‘ 𝐴 ) ) → ∃ 𝑥 ∈ On 𝐴𝑥 )
5 1 2 4 sylancr ( 𝐴 ∈ dom card → ∃ 𝑥 ∈ On 𝐴𝑥 )