Description: Any well-orderable set is strictly dominated by an ordinal number. (Contributed by Jeff Hankins, 22-Oct-2009) (Proof shortened by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | onsdom | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
2 | harsdom | ⊢ ( 𝐴 ∈ dom card → 𝐴 ≺ ( har ‘ 𝐴 ) ) | |
3 | breq2 | ⊢ ( 𝑥 = ( har ‘ 𝐴 ) → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ( har ‘ 𝐴 ) ) ) | |
4 | 3 | rspcev | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝐴 ≺ ( har ‘ 𝐴 ) ) → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
5 | 1 2 4 | sylancr | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |