Metamath Proof Explorer


Theorem onsdominel

Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion onsdominel ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ontri1 ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
2 1 ancoms ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
3 inex1g ( 𝐴 ∈ On → ( 𝐴𝐶 ) ∈ V )
4 ssrin ( 𝐵𝐴 → ( 𝐵𝐶 ) ⊆ ( 𝐴𝐶 ) )
5 ssdomg ( ( 𝐴𝐶 ) ∈ V → ( ( 𝐵𝐶 ) ⊆ ( 𝐴𝐶 ) → ( 𝐵𝐶 ) ≼ ( 𝐴𝐶 ) ) )
6 3 4 5 syl2im ( 𝐴 ∈ On → ( 𝐵𝐴 → ( 𝐵𝐶 ) ≼ ( 𝐴𝐶 ) ) )
7 domnsym ( ( 𝐵𝐶 ) ≼ ( 𝐴𝐶 ) → ¬ ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) )
8 6 7 syl6 ( 𝐴 ∈ On → ( 𝐵𝐴 → ¬ ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) ) )
9 8 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵𝐴 → ¬ ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) ) )
10 2 9 sylbird ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴𝐵 → ¬ ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) ) )
11 10 con4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) → 𝐴𝐵 ) )
12 11 3impia ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴𝐶 ) ≺ ( 𝐵𝐶 ) ) → 𝐴𝐵 )