Step |
Hyp |
Ref |
Expression |
1 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
3 |
|
inex1g |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∩ 𝐶 ) ∈ V ) |
4 |
|
ssrin |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∩ 𝐶 ) ⊆ ( 𝐴 ∩ 𝐶 ) ) |
5 |
|
ssdomg |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∈ V → ( ( 𝐵 ∩ 𝐶 ) ⊆ ( 𝐴 ∩ 𝐶 ) → ( 𝐵 ∩ 𝐶 ) ≼ ( 𝐴 ∩ 𝐶 ) ) ) |
6 |
3 4 5
|
syl2im |
⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∩ 𝐶 ) ≼ ( 𝐴 ∩ 𝐶 ) ) ) |
7 |
|
domnsym |
⊢ ( ( 𝐵 ∩ 𝐶 ) ≼ ( 𝐴 ∩ 𝐶 ) → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) |
8 |
6 7
|
syl6 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) ) |
10 |
2 9
|
sylbird |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) ) |
11 |
10
|
con4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) → 𝐴 ∈ 𝐵 ) ) |
12 |
11
|
3impia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ∩ 𝐶 ) ≺ ( 𝐵 ∩ 𝐶 ) ) → 𝐴 ∈ 𝐵 ) |