| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ontri1 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 3 |  | inex1g | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∩  𝐶 )  ∈  V ) | 
						
							| 4 |  | ssrin | ⊢ ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∩  𝐶 )  ⊆  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 5 |  | ssdomg | ⊢ ( ( 𝐴  ∩  𝐶 )  ∈  V  →  ( ( 𝐵  ∩  𝐶 )  ⊆  ( 𝐴  ∩  𝐶 )  →  ( 𝐵  ∩  𝐶 )  ≼  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 6 | 3 4 5 | syl2im | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∩  𝐶 )  ≼  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 7 |  | domnsym | ⊢ ( ( 𝐵  ∩  𝐶 )  ≼  ( 𝐴  ∩  𝐶 )  →  ¬  ( 𝐴  ∩  𝐶 )  ≺  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 8 | 6 7 | syl6 | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ⊆  𝐴  →  ¬  ( 𝐴  ∩  𝐶 )  ≺  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ⊆  𝐴  →  ¬  ( 𝐴  ∩  𝐶 )  ≺  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 10 | 2 9 | sylbird | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  𝐴  ∈  𝐵  →  ¬  ( 𝐴  ∩  𝐶 )  ≺  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 11 | 10 | con4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ∩  𝐶 )  ≺  ( 𝐵  ∩  𝐶 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 12 | 11 | 3impia | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  ( 𝐴  ∩  𝐶 )  ≺  ( 𝐵  ∩  𝐶 ) )  →  𝐴  ∈  𝐵 ) |