Metamath Proof Explorer


Theorem onssnel2i

Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994)

Ref Expression
Hypothesis on.1 𝐴 ∈ On
Assertion onssnel2i ( 𝐵𝐴 → ¬ 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 on.1 𝐴 ∈ On
2 1 onirri ¬ 𝐴𝐴
3 ssel ( 𝐵𝐴 → ( 𝐴𝐵𝐴𝐴 ) )
4 2 3 mtoi ( 𝐵𝐴 → ¬ 𝐴𝐵 )