Metamath Proof Explorer
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994)
|
|
Ref |
Expression |
|
Hypothesis |
on.1 |
⊢ 𝐴 ∈ On |
|
Assertion |
onssneli |
⊢ ( 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
on.1 |
⊢ 𝐴 ∈ On |
2 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵 ) ) |
3 |
1
|
oneli |
⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ On ) |
4 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
5 |
|
ordirr |
⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐵 ) |
7 |
2 6
|
nsyli |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐴 ) ) |
8 |
7
|
pm2.01d |
⊢ ( 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) |