Metamath Proof Explorer


Theorem onssneli

Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994)

Ref Expression
Hypothesis on.1 𝐴 ∈ On
Assertion onssneli ( 𝐴𝐵 → ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 on.1 𝐴 ∈ On
2 ssel ( 𝐴𝐵 → ( 𝐵𝐴𝐵𝐵 ) )
3 1 oneli ( 𝐵𝐴𝐵 ∈ On )
4 eloni ( 𝐵 ∈ On → Ord 𝐵 )
5 ordirr ( Ord 𝐵 → ¬ 𝐵𝐵 )
6 3 4 5 3syl ( 𝐵𝐴 → ¬ 𝐵𝐵 )
7 2 6 nsyli ( 𝐴𝐵 → ( 𝐵𝐴 → ¬ 𝐵𝐴 ) )
8 7 pm2.01d ( 𝐴𝐵 → ¬ 𝐵𝐴 )