| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniexg | ⊢ ( 𝐴  ∈  𝑉  →  ∪  𝐴  ∈  V ) | 
						
							| 2 |  | ssorduni | ⊢ ( 𝐴  ⊆  On  →  Ord  ∪  𝐴 ) | 
						
							| 3 |  | elong | ⊢ ( ∪  𝐴  ∈  V  →  ( ∪  𝐴  ∈  On  ↔  Ord  ∪  𝐴 ) ) | 
						
							| 4 | 3 | biimpar | ⊢ ( ( ∪  𝐴  ∈  V  ∧  Ord  ∪  𝐴 )  →  ∪  𝐴  ∈  On ) | 
						
							| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ⊆  On )  →  ∪  𝐴  ∈  On ) | 
						
							| 6 |  | onsuc | ⊢ ( ∪  𝐴  ∈  On  →  suc  ∪  𝐴  ∈  On ) | 
						
							| 7 |  | onenon | ⊢ ( suc  ∪  𝐴  ∈  On  →  suc  ∪  𝐴  ∈  dom  card ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ⊆  On )  →  suc  ∪  𝐴  ∈  dom  card ) | 
						
							| 9 |  | onsucuni | ⊢ ( 𝐴  ⊆  On  →  𝐴  ⊆  suc  ∪  𝐴 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ⊆  On )  →  𝐴  ⊆  suc  ∪  𝐴 ) | 
						
							| 11 |  | ssnum | ⊢ ( ( suc  ∪  𝐴  ∈  dom  card  ∧  𝐴  ⊆  suc  ∪  𝐴 )  →  𝐴  ∈  dom  card ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ⊆  On )  →  𝐴  ∈  dom  card ) |