| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 2 | 1 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 3 |  | limord | ⊢ ( Lim  dom  𝑅1  →  Ord  dom  𝑅1 ) | 
						
							| 4 |  | ordtr1 | ⊢ ( Ord  dom  𝑅1  →  ( ( 𝑥  ∈  𝐴  ∧  𝐴  ∈  dom  𝑅1 )  →  𝑥  ∈  dom  𝑅1 ) ) | 
						
							| 5 | 2 3 4 | mp2b | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐴  ∈  dom  𝑅1 )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 7 |  | rankonidlem | ⊢ ( 𝑥  ∈  dom  𝑅1  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  ( rank ‘ 𝑥 )  =  𝑥 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 11 | 9 10 | eqeltrd | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  ( rank ‘ 𝑥 )  ∈  𝐴 ) | 
						
							| 12 | 8 | simpld | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  𝐴  ∈  dom  𝑅1 ) | 
						
							| 14 |  | rankr1ag | ⊢ ( ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  dom  𝑅1 )  →  ( 𝑥  ∈  ( 𝑅1 ‘ 𝐴 )  ↔  ( rank ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ( 𝑅1 ‘ 𝐴 )  ↔  ( rank ‘ 𝑥 )  ∈  𝐴 ) ) | 
						
							| 16 | 11 15 | mpbird | ⊢ ( ( 𝐴  ∈  dom  𝑅1  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( 𝑅1 ‘ 𝐴 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝑅1 ‘ 𝐴 ) ) ) | 
						
							| 18 | 17 | ssrdv | ⊢ ( 𝐴  ∈  dom  𝑅1  →  𝐴  ⊆  ( 𝑅1 ‘ 𝐴 ) ) |