Metamath Proof Explorer


Theorem onsssuc

Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995)

Ref Expression
Assertion onsssuc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴 ∈ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐵 ∈ On → Ord 𝐵 )
2 ordsssuc ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐴 ∈ suc 𝐵 ) )
3 1 2 sylan2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴 ∈ suc 𝐵 ) )