Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc . (Contributed by NM, 9-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 2 | sucexb | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ∈ V ) ↔ ( Ord suc 𝐴 ∧ suc 𝐴 ∈ V ) ) |
| 4 | elon2 | ⊢ ( 𝐴 ∈ On ↔ ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) | |
| 5 | elon2 | ⊢ ( suc 𝐴 ∈ On ↔ ( Ord suc 𝐴 ∧ suc 𝐴 ∈ V ) ) | |
| 6 | 3 4 5 | 3bitr4i | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) |