Metamath Proof Explorer


Theorem onsucmin

Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion onsucmin ( 𝐴 ∈ On → suc 𝐴 = { 𝑥 ∈ On ∣ 𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 eloni ( 𝑥 ∈ On → Ord 𝑥 )
2 ordelsuc ( ( 𝐴 ∈ On ∧ Ord 𝑥 ) → ( 𝐴𝑥 ↔ suc 𝐴𝑥 ) )
3 1 2 sylan2 ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴𝑥 ↔ suc 𝐴𝑥 ) )
4 3 rabbidva ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝐴𝑥 } = { 𝑥 ∈ On ∣ suc 𝐴𝑥 } )
5 4 inteqd ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝐴𝑥 } = { 𝑥 ∈ On ∣ suc 𝐴𝑥 } )
6 sucelon ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On )
7 intmin ( suc 𝐴 ∈ On → { 𝑥 ∈ On ∣ suc 𝐴𝑥 } = suc 𝐴 )
8 6 7 sylbi ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ suc 𝐴𝑥 } = suc 𝐴 )
9 5 8 eqtr2d ( 𝐴 ∈ On → suc 𝐴 = { 𝑥 ∈ On ∣ 𝐴𝑥 } )