| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eloni | ⊢ ( 𝑥  ∈  On  →  Ord  𝑥 ) | 
						
							| 2 |  | ordelsuc | ⊢ ( ( 𝐴  ∈  On  ∧  Ord  𝑥 )  →  ( 𝐴  ∈  𝑥  ↔  suc  𝐴  ⊆  𝑥 ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐴  ∈  𝑥  ↔  suc  𝐴  ⊆  𝑥 ) ) | 
						
							| 4 | 3 | rabbidva | ⊢ ( 𝐴  ∈  On  →  { 𝑥  ∈  On  ∣  𝐴  ∈  𝑥 }  =  { 𝑥  ∈  On  ∣  suc  𝐴  ⊆  𝑥 } ) | 
						
							| 5 | 4 | inteqd | ⊢ ( 𝐴  ∈  On  →  ∩  { 𝑥  ∈  On  ∣  𝐴  ∈  𝑥 }  =  ∩  { 𝑥  ∈  On  ∣  suc  𝐴  ⊆  𝑥 } ) | 
						
							| 6 |  | onsucb | ⊢ ( 𝐴  ∈  On  ↔  suc  𝐴  ∈  On ) | 
						
							| 7 |  | intmin | ⊢ ( suc  𝐴  ∈  On  →  ∩  { 𝑥  ∈  On  ∣  suc  𝐴  ⊆  𝑥 }  =  suc  𝐴 ) | 
						
							| 8 | 6 7 | sylbi | ⊢ ( 𝐴  ∈  On  →  ∩  { 𝑥  ∈  On  ∣  suc  𝐴  ⊆  𝑥 }  =  suc  𝐴 ) | 
						
							| 9 | 5 8 | eqtr2d | ⊢ ( 𝐴  ∈  On  →  suc  𝐴  =  ∩  { 𝑥  ∈  On  ∣  𝐴  ∈  𝑥 } ) |