Metamath Proof Explorer


Theorem onsucssi

Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 16-Sep-1995)

Ref Expression
Hypotheses onssi.1 𝐴 ∈ On
onsucssi.2 𝐵 ∈ On
Assertion onsucssi ( 𝐴𝐵 ↔ suc 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 onssi.1 𝐴 ∈ On
2 onsucssi.2 𝐵 ∈ On
3 2 onordi Ord 𝐵
4 ordelsuc ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ suc 𝐴𝐵 ) )
5 1 3 4 mp2an ( 𝐴𝐵 ↔ suc 𝐴𝐵 )