Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝐵 → ( 𝐴 ∈ On ↔ suc 𝐵 ∈ On ) ) |
2 |
1
|
biimpac |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐵 ∈ On ) |
3 |
|
eloni |
⊢ ( suc 𝐵 ∈ On → Ord suc 𝐵 ) |
4 |
|
ordsuc |
⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) |
5 |
|
ordunisuc |
⊢ ( Ord 𝐵 → ∪ suc 𝐵 = 𝐵 ) |
6 |
4 5
|
sylbir |
⊢ ( Ord suc 𝐵 → ∪ suc 𝐵 = 𝐵 ) |
7 |
|
suceq |
⊢ ( ∪ suc 𝐵 = 𝐵 → suc ∪ suc 𝐵 = suc 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( Ord suc 𝐵 → suc ∪ suc 𝐵 = suc 𝐵 ) |
9 |
|
ordunisuc |
⊢ ( Ord suc 𝐵 → ∪ suc suc 𝐵 = suc 𝐵 ) |
10 |
8 9
|
eqtr4d |
⊢ ( Ord suc 𝐵 → suc ∪ suc 𝐵 = ∪ suc suc 𝐵 ) |
11 |
2 3 10
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ suc 𝐵 = ∪ suc suc 𝐵 ) |
12 |
|
unieq |
⊢ ( 𝐴 = suc 𝐵 → ∪ 𝐴 = ∪ suc 𝐵 ) |
13 |
|
suceq |
⊢ ( ∪ 𝐴 = ∪ suc 𝐵 → suc ∪ 𝐴 = suc ∪ suc 𝐵 ) |
14 |
12 13
|
syl |
⊢ ( 𝐴 = suc 𝐵 → suc ∪ 𝐴 = suc ∪ suc 𝐵 ) |
15 |
|
suceq |
⊢ ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵 ) |
16 |
15
|
unieqd |
⊢ ( 𝐴 = suc 𝐵 → ∪ suc 𝐴 = ∪ suc suc 𝐵 ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝐴 = suc 𝐵 → ( suc ∪ 𝐴 = ∪ suc 𝐴 ↔ suc ∪ suc 𝐵 = ∪ suc suc 𝐵 ) ) |
18 |
11 17
|
syl5ibr |
⊢ ( 𝐴 = suc 𝐵 → ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = ∪ suc 𝐴 ) ) |
19 |
18
|
anabsi7 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = ∪ suc 𝐴 ) |
20 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
21 |
|
ordunisuc |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
22 |
20 21
|
syl |
⊢ ( 𝐴 ∈ On → ∪ suc 𝐴 = 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → ∪ suc 𝐴 = 𝐴 ) |
24 |
19 23
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = 𝐴 ) |