Metamath Proof Explorer
Description: Transitive law for ordinal numbers. Exercise 3 of TakeutiZaring p. 40.
(Contributed by NM, 6-Nov-2003)
|
|
Ref |
Expression |
|
Assertion |
ontr2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
2 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
3 |
|
ordtr2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |