Metamath Proof Explorer


Theorem ontr2

Description: Transitive law for ordinal numbers. Exercise 3 of TakeutiZaring p. 40. (Contributed by NM, 6-Nov-2003)

Ref Expression
Assertion ontr2 ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 eloni ( 𝐶 ∈ On → Ord 𝐶 )
3 ordtr2 ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )