Metamath Proof Explorer


Theorem ontrci

Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994)

Ref Expression
Hypothesis on.1 𝐴 ∈ On
Assertion ontrci Tr 𝐴

Proof

Step Hyp Ref Expression
1 on.1 𝐴 ∈ On
2 1 onordi Ord 𝐴
3 ordtr ( Ord 𝐴 → Tr 𝐴 )
4 2 3 ax-mp Tr 𝐴